California Instruments Lx Series

3-18 kVA Programmable AC Power Source / Analyzer

- **Backward Compatible**
 Compatible with HP6834B & iL Series AC Sources
 Function & bus compatible with the Agilent HP6834B & California Instruments iL Series

- **Three phase and Single phase modes**
 Ideally suited for avionics and defense applications

- **3 kVA to 18 kVA Power Levels**
 Match power source and cost to application requirements

- **Arbitrary Waveform Generator**
 Test products for harmonics susceptibility

- **Built-in Power Analyzer**
 Performs voltage and load current harmonic analysis and waveform acquisition

- **Standard IEEE-488, USB & RS232**
 Remote control interface for ATE system integration included

Integrated System
The Lx Series represents a modern AC power source that addresses increasing demands on test equipment to perform more functions at a lower cost. By combining a flexible AC power source with a harmonic power analyzer, the Lx Series systems are capable of handling applications that would traditionally have required multiple instruments.

The sleek integrated approach of the Lx Series avoids the cable clutter that is commonly found in AC test setups. All connections are made internally and the need for external digital multimeters, power harmonics analyzer and current shunts is completely eliminated.

Using a state of the art Digital Signal Processor in conjunction with precision A/D converters, the Lx Series provides more accuracy and resolution than can be found in most dedicated harmonic power analyzers. Since many components in the Lx Series are shared between the AC source and the power analyzer, the total cost of the integrated system is less than the typical cost of a multiple unit system.

Easy To Use Controls
The Lx Series is completely microprocessor controlled and can be operated from a simple front panel keypad. An analog control located next to the backlit alphanumeric LCD display allows output voltage and frequency to be slewed up or down dynamically. The control employs a dynamic rate change algorithm that combines the benefits of precise control over small parameter changes with quick sweeps through the entire range. A keypad makes precise entries simple.

Applications
With precise output regulation and accuracy, high load drive current, multi or single phase mode and built-in power analyzer measurement capabilities, Lx Series AC source/analyzers address many application areas for AC power testing. Additional features, like line arbitrary waveform generation and available DO 160, MIL 704, or Airbus test standards, make the Lx Series a good choice for avionics or defense applications. All Lx Series AC sources are equipped with IEEE-488 (GPIB), USB and RS232C remote control interfaces and support SCPI command language programming. An ethernet interface option is available.

HP6834B Compatibility
The Lx Series offers functional and bus compatibility with the Agilent HP6834B AC power sources as well as the CI iL Series AC power sources and may be used in existing test systems without the need to modify program code.

Standard Waveforms
The Lx Series provides three standard waveforms that are always available for output. The standard waveforms are:
- Sinewave for normal AC applications.
- Squarewave for special applications.
- Clipped Sinewave - Simulates THD level to test for harmonic distortion susceptibility.

In addition to these standard waveforms, user defined waveform can be downloaded over the bus.
Lx Series - AC Transient Generation
Harmonic Waveform Generation
Using the latest DSP (Digital Signal Processing) technology, the Lx Series controller is capable of generating harmonic waveforms to test for harmonics susceptibility of a unit under test. With the help of the supplied Windows Graphical User Interface program, defining harmonic waveforms is as easy as specifying the relative amplitude and phase angle for each of up to 50 harmonics. The waveform data points are generated and downloaded by the GUI to the AC source through either IEEE-488 or RS232C bus and remain in non-volatile memory. Up to twelve waveforms can be stored and given a user defined name for easy recall.

Arbitrary Waveform Generation
Using the provided GUI program or custom software, the user also has the ability to define arbitrary waveform data. Complex AC voltage anomalies can be simulated this way. The GUI program provides a catalog of custom waveforms and also allows real-world waveforms captured on a digital oscilloscope to be downloaded to one of the AC source's waveform memories. Downloaded waveforms are retained in non-volatile memory for recall over the bus or from the front panel. User defined waveform names make it easy to recall the desired waveform when needed.

Lx Series - Configuration Options
Transient Programming
To simulate common line disturbance occurrences, the Lx Series offers a list of transient steps. These steps can be programmed from the front panel or downloaded over the interface using the GUI program supplied. The GUI allows libraries of commonly used line disturbances to be created on disk for quick recall. Once downloaded, the transient program can be executed from the PC or from the front panel. AC transient generation allows the effect of rapid changes in voltage, frequency, phase angle and waveform shape on the unit under test to be analyzed. The combination of transients and user defined arbitrary waveforms creates a powerful test platform for AC powered products.

Lx Series - Measurement and Analysis
The Lx Series measurement system is based on real-time digitization of the voltage and current waveforms using a 4K sample buffer. The digitized waveform data is processed by a Digital Signal Processor to extract conventional load values such as rms voltage, rms current, real and apparent power. The same data is also used to perform Fast Fourier Transformation (FFT) to extract the harmonic amplitude and phase angle of up to 50 harmonics.

Standard Measurements
The following standard measurements are available from the front panel or via the bus:
- Frequency and Phase
- Voltage (rms)
- Current (rms) and Peak Current
- Crest Factor
- Neutral Current (rms)
- Real Power and Apparent Power
- Power Factor
Lx Series

Advanced Measurement Functions
In addition to standard load parameters, the Lx Series is capable of measuring voltage and current amplitude and phase harmonics up to the 50th harmonic (for fundamental frequencies up to 250 Hz). Total harmonic distortion of both voltage and current is also available. Harmonic analysis data can be displayed on the front panel display or on the PC using the GUI program. The GUI can also be used to save and print harmonics data in tabular, bar graph or time domain formats. The acquired voltage and current time-domain waveforms for each output phase can be displayed using the GUI program. Waveform displays on the PC include voltage and current combined, three phase voltage, three phase current and true power. The time-domain data is also available for transfer to a PC through IEEE-488, USB, RS232C, or Ethernet (option) when using custom software.

Diagnostics Capability
The AC Source can perform a self test and report any errors. The self test will run until the first error is encountered and terminate. The response to the self test query command will either be the first error encountered or 0 if no error was found. (Self test passed).

Windows Instrument Control Software
A Windows Vista/2000/XP™ compatible Instrument Control Software (GUI) offers a soft front panel interface for operation from a PC. The following functions are available:
- Steady state output control (all parameters).
- Create, run, save and print transient programs.
- Generate and save harmonic waveforms.
- Generate and save arbitrary waveforms.
- Download data from a digital storage oscilloscope.
- Measure and log standard measurements.
- Capture and display Voltage and Current waveforms.
- Measure, display, print and log harmonic voltage and current measurements.

Constant Power AC Mode - Available Max. AC Current

![Constant Power AC Mode Graph]

- Current (RMS)
 - 10%
 - 20%
 - 50%
 - 100%
 - 125%

- Voltage (RMS)
 - 10%
 - 50%
 - 80%
 - 100%

Full Power
Output

<table>
<thead>
<tr>
<th>Maximum Power per phase</th>
<th>3000Lx: 1 phase: 3000 VA, 3 phase: 1000 VA; 4500Lx: 1 phase 4500 VA, 3 phase 1500 VA; 6000Lx: 1 phase 5770 VA, 3 phase: 1923 VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power factor</td>
<td>0 to unity at full output VA</td>
</tr>
</tbody>
</table>

Voltage Ranges

<table>
<thead>
<tr>
<th>Range</th>
<th>V Low</th>
<th>V High</th>
<th>VA Programming Resolution</th>
<th>Line Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 0-150V</td>
<td>0-150V</td>
<td>0-300V</td>
<td>100 mV</td>
<td>< 0.1 % FS</td>
</tr>
</tbody>
</table>

Programming Accuracy (25°C ± 5°C)

<table>
<thead>
<tr>
<th>Voltage (rms): ± (0.05% + 0.25 V) from 5.0 V to FS; Frequency: ± 0.025 45 Hz - 819.1 Hz, ± 0.7 % > 819.1 Hz; Phase: ± 1° 45-100 Hz, ± (1° + 1°/kHz) 100 Hz-1kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Regulation</td>
</tr>
<tr>
<td>Line Regulation</td>
</tr>
</tbody>
</table>

Programming Accuracy (25°C ± 5°C)

Frequency Range

| Frequency Range | 17 Hz - 1000 Hz (see -HF option for higher output frequencies) |

Frequency Resolution

| Frequency Resolution | 0.01 Hz at < 81.9 Hz, 0.1 Hz at 82.0 to 819.1 Hz, 1 Hz at > 819 Hz |

Max RMS Current

<table>
<thead>
<tr>
<th>Max RMS Current</th>
<th>V Range</th>
<th>V high</th>
<th>V low</th>
<th>< At Full Power</th>
<th>Model</th>
<th>3000Lx-3 Ø</th>
<th>3000Lx-1 Ø</th>
<th>4500Lx-3 Ø</th>
<th>4500Lx-1 Ø</th>
<th>6000Lx-3 Ø</th>
<th>6000Lx-1 Ø</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3 a</td>
<td>6.4 A</td>
<td>12.8 A</td>
<td>38.4 A</td>
<td>At FS Voltage ></td>
<td>V Low</td>
<td>6.6 A</td>
<td>20.0 A</td>
<td>10.0 A</td>
<td>30.0 A</td>
<td>12.8 A</td>
<td>38.4 A</td>
</tr>
<tr>
<td>-1 a</td>
<td>19.2 A</td>
<td></td>
<td></td>
<td></td>
<td>V High</td>
<td>3.3 A</td>
<td>10.0 A</td>
<td>5.0 A</td>
<td>15.0 A</td>
<td>6.4 A</td>
<td>19.2 A</td>
</tr>
</tbody>
</table>

Note: Constant power mode on 3000Lx and 4500Lx provides increased current at reduced voltage; 6000Lx provides maximum voltage.

Current Limit

Programmable from 0 Amps to maximum current for selected range

Peak Current

3000Lx: 3.8 X (rms @ full scale voltage); 4500Lx: 3.8 X (rms @ full scale voltage); 6000Lx: 3 X (rms @ full scale voltage)

Output Noise

100mV rms typ. (20 kHz to 1 MHz)

Harmonic Distortion

< 1% (at full scale voltage, full resistive load)

Isolation Voltage

300 V rms output to chassis

Output Relay

Push button controlled and bus controlled output relay

Input

Voltage

ModelLx 3000Lx, 4500Lx, 9000Lx, 13500Lx: Standard: 208-230 ± 10% VAC, (L-L, 3 Phase); Option -400: 400 ± 10% VAC (L-L, 3 Phase);

ModelLx 6000Lx, 12000Lx, 18000Lx: Standard 208-230 ± 10% VAC (L-L, 3 Phase)

Notes: 1. Input must be specified when ordering. 2. -400 option not available on 6000Lx, 12000Lx, 18000Lx. 3. 3000Lx can be operated from 1 phase AC.

Line Current (rms per phase)

<table>
<thead>
<tr>
<th>Model</th>
<th>3000Lx</th>
<th>3000Lx (1Phase)</th>
<th>4500Lx</th>
<th>6000Lx (@ 208V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>187 VLL</td>
<td>19 A</td>
<td>32 A</td>
<td>31 A</td>
<td>38 A</td>
</tr>
<tr>
<td>360 VLL</td>
<td>10 A</td>
<td>n/a</td>
<td>16 A</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Inrush Current

<table>
<thead>
<tr>
<th>Inrush Current</th>
<th>@ 180-254 V: 50 A peak (Per phase):</th>
<th>@ 360-440 V: 83 A peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Frequency</td>
<td>@ 47-440 Hz</td>
<td></td>
</tr>
</tbody>
</table>

Efficiency

75% typical

Power Factor

0.6 typical

Hold-up Time

At least 10 ms

System

Storage

Setup: 16 complete instrument setups / Transient List: 100 transient steps per list (SCPI mode) or 16 transient registers (APE mode)

Trigger Input/Output

Input: Triggers measurements or transient steps - SMA connector: 10K pull-up / Output: SMA Connector: HCTTL output

Protection

Overload/Temp/Voltage

Overload: Constant current or constant voltage mode; Over temperature: Automatic Shutdown; Over voltage: Automatic shutdown

Regulatory/RFI Suppression

IEC1010, EN50081-2, EN50082-2, CE (for 400V input only), EMC, and safety mark requirements / RFI Suppression: CISPR 11, Group 1, Class A

Measurement

Measurements - Standard (AC Measurements)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Frequency</th>
<th>Phase</th>
<th>Voltage (AC)</th>
<th>Current (AC rms)</th>
<th>Real Power</th>
<th>Apparent Power</th>
<th>Power Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>45-81.9 Hz</td>
<td>82.0-819.1 Hz</td>
<td>> 819 Hz</td>
<td>45-100 Hz</td>
<td>100-1000 Hz</td>
<td>0-300 V</td>
<td>0-50 A</td>
</tr>
<tr>
<td>Accuracy*</td>
<td>1 ø mode (1)</td>
<td>0.1% + 1 digit</td>
<td>0.5%</td>
<td>0.5% + 250 mV</td>
<td>0.1% + 150 mA</td>
<td>0.15% + 9 W</td>
<td>0.15% + 9 VA</td>
</tr>
<tr>
<td></td>
<td>3 ø mode (3)</td>
<td>0.1%</td>
<td>0.1% + 50 mA</td>
<td>0.15% + 3W</td>
<td>0.15% + 3 VA</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Resolution*</td>
<td>0.01 Hz / 0.1 Hz / 1 Hz</td>
<td>0.1° / 1°</td>
<td>10 mV</td>
<td>1 mA</td>
<td>1 W</td>
<td>1 VA</td>
<td>0.01</td>
</tr>
</tbody>
</table>

* Accuracy specifications are in % of reading and apply above 100 counts. For multi-chassis configurations, current, power range and accuracy specifications are times three. Power factor accuracy applies for PF > 0.5 and VA > 50% of max. Frequency measurement specification valid for output > 30 Vrms.

Note: Specifications are subject to change without notice. Specifications are warranted over an ambient temperature range of 25° ± 5°C. Unless otherwise noted, specifications are per phase for a sinewave with a resistive load and apply after a 30 minute warm-up period. For three phase configurations, all specifications are for L-N. Phase angle specifications are valid under balanced load conditions only.
Remote Control

IEEE-488 Interface (option) IEEE-488 (GPIB) talker listener. Subset: AH1, C0, DC1, DT1, L3, PP0, RL2, SH1, SR1, T6, IEEE-488.2 SCPI Syntax

USB Interface & Ethernet
Version: USB 1.1; Speed: 460 Kb/s maximum / Ethernet Interface (Optional): specify -LAN option. 10BaseT, 100BaseT, RJ45

RS232C Interface

Physical Dimensions

Dimensions (per chassis) Height: 10.5” (267 mm), Width: 19” (483 mm), Depth: 23.7” (602 mm) (depth includes rear panel connectors)

Weight
Chassis: Net: 193 lbs / 87.7 Kg, Shipping: 280 lbs / 127.3 Kg (for /2 or /3 model configurations multiply number of chassis).

Vibration and Shock
Designed to meet NSTA project 1A transportation level

Air Intake/Exhaust
Forced air cooling, side air intake, rear exhaust

Temperature & Diagnostics
Temperature: Operating: 0 to 35° C, full power / Storage: -40 to +85° C; Diagnostics: Built-in self test available over bus (*TST)

Rear Panel Connectors

Option -AX Specifications

Option -AX Provides separate isolated 26 VAC regulated and 5 Vac unregulated outputs. The 26 V is normally used for servo-synchro excitation, and the 5 V for lamp power. 26 Volt-Accuracy: ± 2%. Current capacity: 3 ARMS. Frequency: 360/440 Hz. Regulation ± 0.05%. 5 Volt-Accuracy: ± 5%. Current capacity: 5 ARMS

Option -ADV Specifications

Measurements - Harmonics
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Frequency Fundamental Harmonics</th>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>45-250 Hz / 0.09 - 12.5 kHz</td>
<td>750 mV 0.3% + 750 mV +0.3% /1 kHz 0.5 A / 0.3% + 150 mA +0.3% /1 kHz</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.01% + 1 digit + 0.5% + 1 digit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>0.01 Hz / 0.1 Hz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wavesforms
Pre defined: Sine, Square, Clipped User defined, 1024 addressable data points; Storage: 50 user waveforms, non-volatile memory

Data Acquisition
Parameters: Voltage, Current time domain, per phase; Resolution: 4096 data points, 10.4 usec (1ø) or 31.25 usec (3ø) sampling interval

Option -HV Specifications

Voltage/Frequency Ranges
Low: 0-135 Volt; High: 0-270 Volt / Frequency: Without -HF option: 3000Lx, 4500Lx, 6000Lx: 45 Hz - 5000 Hz; 9000Lx, 12000Lx, 13500Lx, 18000Lx: 45 Hz - 5000 Hz

Max RMS Current at Full Power
3 Phase: High: 7.4 A, Low: 14.8 A, 1 Phase: High: 22.2 A, Low: 44.4 A; Note: Constant power modes on 3000Lx and 4500Lx. Current available at reduced voltage for 3000Lx, 4500Lx, and max voltage for 6000Lx

Max RMS Current at FS Voltage
3000Lx: 3 Phase: High: 3.7 A, Low: 7.4 A, 1 Phase: High: 11.1 A, Low: 22.2 A; 4500Lx: 3 Phase: High: 5.6, Low: 11.1; 1 Phase: High: 16.7 A, Low: 33.3 A; 6000Lx: 3 Phase: High: 7.4, Low: 14.8 A, 1 Phase: High: 22.2 A, Low: 44.4 A

Option -EHV Specifications

Voltage/Frequency Ranges
Voltage: Low: 0-200 Volt; High: 0-400 Volt / Frequency: With -HF option: 45 Hz - 5000 Hz

Max RMS Current at Full Power
3 Phase: High: 5.0 A, Low: 10.0 A; 1 Phase: High: 15.0 A, Low: 30.0 A; Note: Constant power modes on 3000Lx and 4500Lx. Current available at reduced voltage for 3000Lx, 4500Lx, and max voltage for 6000Lx

Max RMS Current at FS Voltage
3000Lx: 3 Phase: High: 2.5 A, Low: 5.0 A, 1 Phase: High: 7.5 A, Low: 15.0 A; 4500Lx: 3 Phase: High: 3.8, Low: 7.5; 1 Phase: High: 11.3 A, Low: 22.5 A; 6000Lx: 3 Phase: High: 5.0, Low: 10.0 A, 1 Phase: High: 15.0 A, Low: 30.0 A

Option -HF Specifications

Measurements:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Frequency</th>
<th>Phase</th>
<th>Voltage (AC)</th>
<th>Current (AC rms)</th>
<th>Real Power</th>
<th>Apparent Power</th>
<th>Power Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>F < 2000 Hz: See standard Lx Specifications;</td>
<td>45 - 5000 Hz</td>
<td>< 2000 Hz</td>
<td>0-300 V</td>
<td>0-5 A</td>
<td>0-5 kW</td>
<td>0-5 kVA</td>
<td>0.00-1.00</td>
</tr>
<tr>
<td>F > 2000 Hz: See table ></td>
<td>0.1% + 1 digit</td>
<td>0.5”</td>
<td>0.05% + 250 mV</td>
<td>0.5% + 150 mA</td>
<td>0.5% + 9 W</td>
<td>0.5% + 9 VA</td>
<td>0.03</td>
</tr>
</tbody>
</table>

250 mVrms typical (20 kHz to 1 MHz)
3000Lx 34500Lx, 6000Lx: Standard: -HV 45 Hz - 5000 Hz; - EHV: 45 Hz - 5000 Hz

Output Noise
250 mVrms typical (20 kHz to 1 MHz)
Lx Series

<table>
<thead>
<tr>
<th>Model¹</th>
<th>Output Power</th>
<th>No of Output Phases</th>
<th>Nom. Input Voltage²</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000Lx</td>
<td>3 kVA</td>
<td>-1</td>
<td>208-230 V</td>
</tr>
<tr>
<td>3000Lx-400</td>
<td>3 kVA</td>
<td>-1</td>
<td>400 V</td>
</tr>
<tr>
<td>4500Lx</td>
<td>4.5 kVA</td>
<td>-1</td>
<td>208-230 V</td>
</tr>
<tr>
<td>4500Lx-400</td>
<td>4.5 kVA</td>
<td>-1, -3</td>
<td>208-230 V</td>
</tr>
<tr>
<td>6000Lx</td>
<td>6 kVA</td>
<td>-1</td>
<td>208-230 V</td>
</tr>
<tr>
<td>9000Lx</td>
<td>9 kVA</td>
<td>-1, -3</td>
<td>208-230 V</td>
</tr>
<tr>
<td>9000Lx-400</td>
<td>9 kVA</td>
<td>-1, -3</td>
<td>400 V</td>
</tr>
<tr>
<td>12000Lx</td>
<td>12 kVA</td>
<td>-1, -3</td>
<td>208-230 V</td>
</tr>
<tr>
<td>13500Lx/3</td>
<td>13.5 kVA</td>
<td>-1</td>
<td>208-230 V</td>
</tr>
<tr>
<td>13500Lx/3-400</td>
<td>13.5 kVA</td>
<td>-1</td>
<td>400 V</td>
</tr>
<tr>
<td>18000Lx</td>
<td>18 kVA</td>
<td>-1</td>
<td>208-230 V</td>
</tr>
</tbody>
</table>

Note 1: The /2 or /3 designation indicates number of chassis.
Note 2: All input voltage specifications are for Line to Line three phase, delta or wye. Model 3000Ls (208 V input) can be operated on 230 V L-N single phase if needed.

Ordering Information

Model
Refer to table shown for model numbers and configurations. Specify number of output phases (-1 or -3) as part of model number, eg 4500Lx-1 or 4500Lx-3.

Supplied with

Options

Input Options
-400 400 ±10% Volt Line to Line AC input
-480 480 ±10% (3 phase output only)

Output Options
-AX Auxiliary outputs, 26 VAC, 5 VAC. Limits upper frequency to 800 Hz.
-EHV 200/400 V output range.
-HF Extends upper frequency limit. See HF table.
-LF Limits output frequency to 500 Hz.

Keypad Options
-RP LS style rotary knobs

Cabinet Options

-RMS Rackmount Slides. Recommended for rack mount applications.

C prefix Cabinet System. Installed and pre-wired in 19” cabinet.

Controller Options
-160 RTCA/DO-160, Change 2, EuroCAE-14D [Section 16, AC only]
-704F Mil-Std 704 rev A - F
-704 Mil-Std 704 rev D and E test firmware. [AC only]

Option Matrix

<table>
<thead>
<tr>
<th>Option</th>
<th>HF</th>
<th>LF</th>
<th>HV</th>
<th>EHV</th>
<th>LKM</th>
<th>LKS</th>
<th>EXS</th>
<th>AX</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>-</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>LF</td>
<td>X</td>
<td>-</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>HV</td>
<td>O</td>
<td>O</td>
<td>-</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>EHV</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>-</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>LKM</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>LKS</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>EXS</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>AX</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>-</td>
</tr>
</tbody>
</table>

Note 1: See option matrix
Note 2: -LKS, -LNS and -EXS are mutually exclusive and with Ext Trig function.