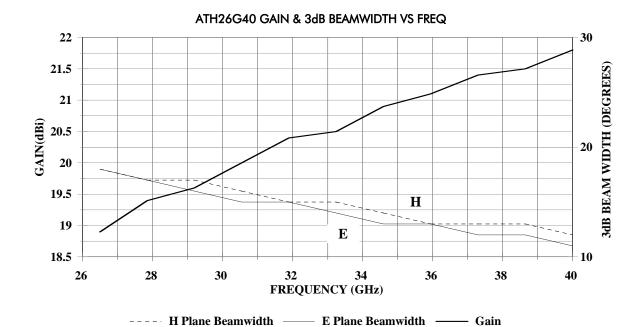
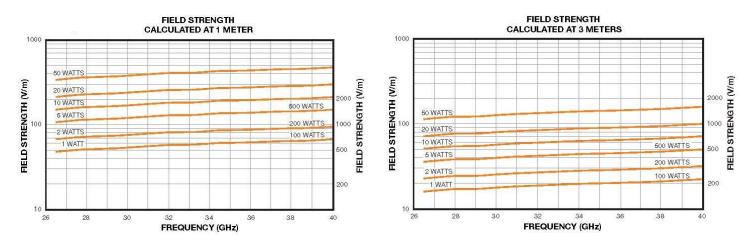


rf/microwave instrumentation


Model ATH26G40 Antenna 26.5GHz-40GHz


The Model ATH26G40 is a wide band, high gain, high power microwave horn antenna. With a minimum gain of 18.9dB over isotropic, the Model ATH26G40 supplies the high intensity fields necessary for RFI/EMI field testing within and beyond the confines of a shielded room. The Model ATH26G40 is extremely compact and light weight for ready mobility, yet is built tough enough for the extra demands of outdoor use and easily mounts on a rigid waveguide by the waveguide flange. Part of a family of microwave frequency antennas, the Model ATH26G40 provides the 26.5-40GHz response required for many often used test specifications.

The ATH26G40 is ideally suited for use with the AR Model 40T26G40 and other high power amplifiers in this frequency range.

SPECIFICATIONS

FREQUENCY RANGE	26.5-40GHz
POWER INPUT (maximum)	240 watts CW
POWER GAIN (over isotropic)	See Curve
VSWR Maximum Average BEAM WIDTH (average) E Plane	1.3:1 See Curve
H Plane	
CONNECTOR	o
MOUNTING PROVISIONS	Waveguide flange
WEIGHT (maximum)	56.7 g (2 oz.)
SIZE (WxHxD)	4.06 x 3.07 x 7.67 cm (1.6 x 1.21 x 3.02 in)

Field strengths have been measured in free-space conditions. Individual shielded rooms, amplifiers, and test-system conditions will influence performance. Field strength also varies with frequency and position of antenna and EUT in non-anechoic testing environments.