Site Master
S810C and S820C
Microwave Transmission Line
and Antenna Analyzer
Programming Manual
WARRANTY
The Anritsu product(s) listed on the title page is (are) warranted against defects in materials and workmanship for one year from the date of shipment. Anritsu’s obligation covers repairing or replacing products which prove to be defective during the warranty period. Buyers shall prepay transportation charges for equipment returned to Anritsu for warranty repairs. Obligation is limited to the original purchaser. Anritsu is not liable for consequential damages.

LIMITATION OF WARRANTY
The foregoing warranty does not apply to Anritsu connectors that have failed due to normal wear. Also, the warranty does not apply to defects resulting from improper or inadequate maintenance by the Buyer, unauthorized modification or misuse, or operation outside the environmental specifications of the product. No other warranty is expressed or implied, and the remedies provided herein are the Buyer’s sole and exclusive remedies.

TRADEMARK ACKNOWLEDGEMENTS
MS-DOS, Windows, and Windows for Workgroups are registered trademarks of the Microsoft Corporation.

NOTICE
Anritsu Company has prepared this manual for use by Anritsu Company personnel and customers as a guide for the proper installation, operation, and maintenance of Anritsu Company equipment and computer programs. The drawings, specifications, and information contained herein are the property of Anritsu Company, and any unauthorized use or disclosure of these drawings, specifications, and information is prohibited; they shall not be reproduced, copied, or used in whole or in part as the basis for manufacture or sale of the equipment or software programs without the prior written consent of Anritsu Company.

UPDATES
Updates to this manual, if any, may be downloaded from the Anritsu internet site at: http://www.anritsu.com.
Table of Contents

Programming Overview

- General Description ... 1
- Interface Cable Installation 1
- Serial Communication Parameters 1
- Communications Error Checking 1
- Parameter Validation .. 1
- Entering Remote Mode .. 1
- Exiting Remote Mode .. 2
- Lifetime of Changes to Site Master Operating Parameters 2
- Write Cycle Limitation of EEPROM 2
- Documentation Conventions 2

Control Byte Descriptions

- Setup System - Control Byte #1 (01h) 3
- Set Site Master Frequency - Control Byte #2 (02h) 3
- Select Measurement Mode - Control Byte #3 (03h) 4
- Set Site Master Scale - Control Byte #4 (04h) 4
- Set Site Master Marker - Control Byte #5 (05h) 5
- Set Segmented Limit Lines - Control Byte #6 (06h) 5
- Set DTF Parameter - Control Byte #7 (07h) 6
- Set Time/Date - Control Byte #8 (08h) 7
- Set Reference Number - Control Byte #9 (09h) 8
- Serial Port Echo On/Off - Control Byte #10 (0Ah) 8
- Single Sweep Mode On/Off - Control Byte #11 (0Bh) 8
- Watch-dog Timer On/Off - Control Byte #12 (0Ch) ... 9
- Sequence Site Master Calibration – Control Byte #13 (0Dh) 9
- Set Site Master Data Points – Control Byte #14 (0Eh) 10
- Set Site Master Limit Beep Status — Control Byte #15 (0Fh) 10
- Store Sweep Trace – Control Byte #16 (010h) 10
- Recall Sweep Trace – Control Byte #17 (11h) 10
- Save System Setup - Control Byte #18 (012h) 14
- Recall System Setup - Control Byte #19 (13h) 15
- Query System Status - Control Byte #20 (14h) 15
- Trigger Self-Test - Control Byte #21 (15h) 19
- Read Fail Counters - Control Byte #22 (16h) 19
- Clear Fail Counters - Control Byte #23 (17h) 19
- Query Trace Names - Control Byte #24 (18h) 20
- Delete Sweep Trace - Control Byte #25 (19h) 20
- Upload Sweep Trace — Control Byte #26 (1Ah) 20
- Query Sweep Memory - Control Byte #27 (1Bh) 24
- Select Printer Type - Control Byte #30 (1Eh) 24
- Select DTF Windowing - Control Byte #31 (1Fh) 24
- Set Trace Math - Control Byte #32 (20h) 25
- Set Trace Overlay - Control Byte #34 (22h) 25
- Get Options - Control Byte #37 (25h) 25
- Query Power Level - Control Byte #39 (27h) 25
- Set Power Monitor Unit - Control Byte #40 (28h) ... 26
- Relative Mode On/Off - Control Byte #41 (29h) 26
Offset Mode On/Off - Control Byte #42 (2Ah) .. 27
Zero Mode On/Off - Control Byte #43 (2Bh) .. 27
Trigger Sweep - Control Byte #48 (30h) ... 27
Check Battery Status - Control Byte #50 (32h) 27
Set Marker to Peak - Control Byte #51 (33h) .. 28
Set Marker to Valley - Control Byte #52 (34h) 28
Set Site Master Single Limit - Control Byte #55 (37h) 28
Automatically Save Runtime Setup - Control Byte #64 (40h) 29
Enter Remote Mode - Control Byte #69 (45h) 29
Enter Remote Mode Immediately - Control Byte #70 (46h) 30
Write Custom Cable - Control Byte #80 (50h) 30
Recall Custom Cable - Control Byte #81 (51h) 31
Set Site Master Marker(Peak/Valley) - Control Byte #129 (81h) 31
Set SOSL Cal Parameter – Control Byte #130 (82h) 32
Set OSL Cal Parameter – Control Byte #131 (83h) 32
Write Custom Waveguide - Control Byte #133 (85h) 32
Recall Custom Waveguide - Control Byte #134 (86h) 33
Query User Connector Coefficient - Control Byte #135 (87h) 33
Set User Connector Coefficient - Control Byte #136 (88h) 34
Set Baud Rate - Control Byte #197 (C5h) ... 35
Set Language – Control Byte #198 (C6h) .. 35
Query Time - Control Byte #208 (D0h) ... 35
Read ASCII Serial Number - Control Byte #225 (E1h) 36
Exit remote mode - Control Byte #255 (FFh) 36
Parameter Definitions ... 37
Programming Overview

NOTE: This programming manual is written exclusively for the Anritsu Site Master S8X0C Series. The Anritsu Site Master S8X0C Serial Port Commands are not backward compatible with the Site Master S8X0A Series. For information on firmware upgrades, contact your local Anritsu Service Center.

General Description

The Site Master must first be set into remote mode for communication with a computer. Remote mode differs from normal repetitive sweep and single-sweep modes. During remote mode, the Site Master stops sweeping entirely and attends to the serial port. The Site Master indicates remote mode by displaying the word REMOTE on the front panel display.

Once in remote mode, control bytes and associated data can be sent to the Site Master to command the unit to perform various functions and activities. The Site Master responds with data or feedback as necessary. Remote mode supports all features accessible from the keypad except the printer, which requires connection to the same 9-pin connector on the Site Master connector panel.

Remote mode can be exited by pressing the ESCAPE/CLEAR front panel key or by sending the Exit Remote control byte #255 (FFh) command. When the remote session is terminated, the Site Master resumes normal operation in the same sweep mode it was in before entering remote mode.

Interface Cable Installation

The Site Master is a DTE-type serial device. Communication between the Site Master and a PC is accomplished over a null modem serial cable provided with the Site Master (Anritsu part number 800-441). Connect the cable to the Serial Interface connector on the Site Master Test Connector Panel and to the appropriate COM port connector on the PC.

Serial Communication Parameters

The Site Master begins communication at 9600 bps when first powered on. It uses no parity bits, 8 data bits, and 1 stop bit (N-8-1). No hardware handshaking is used. The Set Baud Rate Control Byte #197 (C5h) serial command can be used to change the baud rate to 19,200, 38,400, 56,000 or 115,200. An invalid setting returns the rate to 9600.

Communications Error Checking

Since there is no hardware handshaking, byte level error handling must be done by the controlling program. The expected number of response bytes for each control byte (listed in the control byte description section of this manual) works well for responses coming from the Site Master. For data streams going to the Site Master, the “watch dog timer” protects against interrupted transmissions by aborting a control byte sequence if the inter-byte time limit is exceeded.

Parameter Validation

The Site Master validates input parameters for each control byte sequence. If the input parameters are out of range or invalid, the Site Master notifies the computer by sending Parameter Error Byte #224 (E0h). The Site Master discards the received data and waits for the next control byte.

Entering Remote Mode

Send the Enter Remote Mode Byte #69 (45h) to the Site Master to enter remote mode at the end of the current sweep. Send the Enter Remote Mode Immediately byte #70 (46h) to enter remote mode in the middle of a sweep.
The Site Master serial port buffer is one byte wide. No internal buffer exists, so waiting for the response from the unit is essential. If the Site Master is not in remote mode, sending a second byte overwrites the original byte commanding it to enter remote mode. If control byte #69 is sent, the Site Master will enter remote mode at the end of the current sweep. If control byte #70 is sent, the unit will enter remote mode as soon as it receives the byte. This means that data stored for the current sweep may be incomplete. Once a response string is received from the Site Master, the unit is ready to accept additional control bytes.

Exiting Remote Mode
To exit remote mode, send the Exit Remote Control byte #255 (0xFF) to the Site Master. The Site Master sends a response byte of 255 (0xFF) then exits remote mode. Remote mode can also be exited by pressing the ESCAPE/CLEAR front panel key.

Lifetime of Changes to Site Master Operating Parameters
System parameters changed during remote mode remain changed for normal operation after the unit exits remote mode. However, the changes are not automatically written to the non-volatile EEPROM. Turning off the Site Master power erases the changed settings.

To retain the changes, the setup must be saved to one of the setup memory locations. Use either the run-time setup location 0, (which holds the power-on defaults) or one of the nine other setup locations. Control byte #64 (40h) sets the auto-save flag which commands the Site Master to automatically save the changes to the run-time setup location upon exiting remote mode. Refer to the Site Master User’s Guide or information in this manual on control byte #18 (12h) for further details.

Write Cycle Limitation of EEPROM
The EEPROM, used to store calibrations, setups and traces has a guaranteed lifetime of at least 100,000 write cycles and an unlimited number of read cycles. The write cycle limitation is for a specific location. For example, setup #1 can be stored 100,000 times and setup #2 can be stored 100,000 times, etc. Because of this, the Site Master does not automatically store the changed system parameters to the EEPROM. Be aware of the EEPROM write cycle limitation when programming the Site Master and keep the number of write cycles to a minimum.

Documentation Conventions
Throughout the rest of the documentation, the following conventions will be observed:

Numeric Representation
Hexadecimal numbers will be represented with the suffix h. For example, the decimal number 255 will be represented in hexadecimal as FFh.

Binary numbers will be represented with the suffix “b.” For example, the decimal number 2 will be represented in binary as 10b.

Decimal numbers will be represented with the prefix “#” when referring to a control byte (command byte) and without prefix or suffix in all other cases.

Bit Positions
When enumerating bits in a byte, bit 0 will always be the least significant bit (LSB).
Control Byte Descriptions

Setup System - Control Byte #1 (01h)

Description: Sets system status flags and switches. The Site Master acts on the entire byte. You must account for the state of each of the bits. For example, if you wanted to turn the LCD back light on without disturbing the other switches you would do the following: query the Site Master with control byte #20. You would mask in the LCD status (04h) with the data from response bytes #136 and #138 and send this to the Site Master after control byte #1.

See control byte #20 (14h) response bytes 136 and 138 for current Site Master configuration. It is important to set the Metric/English flag to the proper value before sending distance information.

Bytes to Follow: 1 byte
1) Status Byte (1b = On, 0b = Off)
 (LSB) bit 0 = Fixed CW Mode On/Off
 bit 1 = Not Used
 bit 2 = LCD Back Light On/Off
 bit 3 = Measurement Unit Metric/English (0b = English, 1b = Metric)
 bit 4 = Cal On/Off
 bit 5-7: Not Used

SM Returns: 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid setting
238 (EEh) Time-out Error

Notes:
1. Cal can be turned on only if a complete calibration has been performed at the current start and stop frequencies. Otherwise, 244 (E0h) will be returned.

Set Site Master Frequency - Control Byte #2 (02h)

Description: Sets the Site Master frequency range.

See control byte #20 (14h) response bytes 4 to 11 for current Site Master configuration.

Bytes to Follow: 8 bytes
1) Start Frequency (highest byte)
2) Start Frequency
3) Start Frequency
4) Start Frequency (lowest byte)
5) Stop Frequency (highest byte)
6) Stop Frequency
7) Stop Frequency
8) Stop Frequency (lowest byte)

SM Returns: 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid frequency range
238 (EEh) Time-out Error

Notes:
1. Start and stop frequencies are given in terms of 1 KHz steps. (e.g., 5.3 GHz would be sent as 5300000 = 5300000 KHz)
Select Measurement Mode - Control Byte #3 (03h)

Description: Sets measurement domain and display graph type. You must have a valid calibration (current frequencies and calibration frequencies being the same) to switch to the Distance domain.

See control byte #20 (14h) response byte 1 for current Site Master mode.

Bytes to Follow:
1 byte
 1) Measurement Mode
 00h: RL Frequency
 01h: SWR Frequency
 02h: Cable Loss Frequency
 10h: RL Distance
 11h: SWR Distance
 40h: Power Monitor
 74h: Fast Tune RL
 75h: Fast Tune SWR

SM Returns:
255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid Measurement Mode
238 (EEh) Time-out Error

Set Site Master Scale - Control Byte #4 (04h)

Description: Sets the graph boundaries.

The scale settings require knowing the graph type for proper configuration. For example, the scale start in return loss is the top of the graph while scale start is the bottom of the graph for SWR. Think of the scale start as being the smallest value on the graph.

See control byte #20 (14h) response bytes 12 to 19 for current Site Master scaling. For Data formats' see Note below.

Bytes to Follow:
8 bytes
 1) Scale Start Value (highest byte)
 2) Scale Start Value
 3) Scale Start Value
 4) Scale Start Value (lowest byte)
 5) Scale Stop Value (highest byte)
 6) Scale Stop Value
 7) Scale Stop Value
 8) Scale Stop Value (lowest byte)

SM Returns:
255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid scale range
238 (EEh) Time-out Error

Notes:
1. Return Loss & Cable Loss
 Scaling is in thousandths of a dB
 Maximum value sent is 54000 which represents 54.00 dB
 Minimum value sent is 0 which represent 0.00 dB
Scale Start Value is the top of the graph
Scale Stop Value is the bottom of the graph

2. SWR: Scaling is in thousandths (of ratio)
 Maximum value sent is 65535 which represents 65.53
 Minimum value sent is 1000 which represents 1.00
Scale Start Value is the bottom of the graph
Scale Stop Value is the top of the graph

Set Site Master Marker - Control Byte #5 (05h)

Description: Sets an individual marker status and location.

The Site Master sets the position of a marker by its relative position on the graph (i.e., the corresponding data point). The lowest position is 0 at the start frequency (or distance). The highest position is at the stop frequency (or distance). For example, if the resolution is 130 Data Points, the start frequency is at point 0 and the stop frequency is at point 129. To calculate the data point from a frequency (or distance) do the following:

\[
\text{Point} = \frac{(\text{resolution} - 1) \times (\text{marker frequency} - \text{start frequency})}{(\text{stop frequency} - \text{start frequency})}
\]

In order to set frequency markers, you must be in the frequency domain. Likewise, if you want to set distance markers, you must be in the distance domain. Marker position is independently remembered for distance and frequency domains.

See control byte #20 (14h) response bytes 20 to 31 for current frequency markers. See control byte #20 (14h) response bytes 114 to 125 for current distance markers. See control byte #20 (14h) response byte 134 for current marker on/off status and byte 135 for the marker delta status.

Bytes to Follow: 5 bytes
1) Marker Number (01h-06h: marker 1-6)
2) Marker Line On/Off (01h = On, 00h = Off)
3) Marker Delta On/Off (01h = On, 00h = Off)
4) Marker Value (higher byte)
5) Marker Value (lower byte)

SM Returns: 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid marker, marker status, or marker position
238 (EEh) Time-out Error

Notes:
1. Marker Delta is not applicable to Marker 5 and Marker 6.

Set Segmented Limit Lines - Control Byte #6 (06h)

Description: Sets the position and On/Off Status of the Limit Lines.

S8X0C supports 5 limit segments. Each segment may have any finite slope and can be enabled and disabled independently of every other segment. The limit beep is enabled for all segments or no segments.

Limit segments are specified by their end points (starting and ending “x” and “y” values).

See control byte #20 (14h) response byte 36 to 105 for current Site Master configuration.

Bytes to Follow: 14 bytes
1) Limit Number
2) Limit Line On/Off (01h = On, 00h = Off)
3) Starting X (highest byte)
4) Starting X
5) Starting X
6) Starting X (lowest byte)
7) Starting Y (highest byte)
8) Starting Y (lowest byte)
9) Ending X (highest byte)
10) Ending X
11) Ending X
12) Ending X (lowest byte)
13) Ending Y (highest byte)
14) Ending Y (lowest byte)

SM Returns:
255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid limit segment, limit status, or limit value
238 (EEh) Time-out Error

Notes:

1. Start and stop frequencies are given in terms of 1 KHz steps. (e.g., 5.3 GHz would be sent as 5300000 = 5300000 KHz.)

2. Limit Value depends on the current display mode selected.

Return Loss & Cable Loss:
Limit is in thousandths of a dB
Maximum value sent is 54000 which represents 54.00 dB
Minimum value sent is 0 which represents 0.0 dB

SWR:
Limit is in thousandths (of ratio)
Maximum value sent is 65530 which represents 65.53
Minimum value sent is 1000 which represents 1.00

Set DTF Parameter - Control Byte #7 (07h)

Description:
Sets Distance to Fault parameters.

Be aware using this control byte. The distance to fault parameters are all inter-related. Consequently, the control byte must change all of those parameters at the same time to properly set them.

Please refer to the Site Master User’s Guide for a detailed explanation of the factors influencing proper selection of DTF parameters.

See control byte #20 (14h) response bytes 106 to 113 and 126 to 133 for current Site Master configuration.

Bytes to Follow:
24 bytes:
1) Start Distance (highest byte)
2) Start Distance
3) Start Distance
4) Start Distance (lowest byte)
5) Stop Distance (highest byte)
6) Stop Distance
7) Stop Distance
8) Stop Distance (lowest byte)
9) Relative Propagation Velocity (highest byte)
10) Relative Propagation Velocity
11) Relative Propagation Velocity
12) Relative Propagation Velocity (lowest byte)
13) Cable Loss (highest byte)
14) Cable Loss
15) Cable Loss
16) Cable Loss (lowest byte)
17) Waveguide Cutoff Frequency (highest byte)
18) Waveguide Cutoff Frequency
19) Waveguide Cutoff Frequency
20) Waveguide Cutoff Frequency (lowest byte)
21) Waveguide Loss (highest byte)
22) Waveguide Loss
23) Waveguide Loss
24) Waveguide Loss (lowest byte)

SM Returns: 255 (FFh) Operation Complete Byte
 224 (E0h) Parameter Error: Parameter(s) out of range
 238 (EEh) Time-out Error

Notes:
1. Give Start & Stop Distances in hundred-thousandths of meter or foot (12.34 m would be sent as 1234000).
2. Relative Propagation Velocity is in hundred-thousandths (a Relative Propagation Velocity of 0.850 will be sent as 85000).
3. Cable Loss is in hundred-thousandths of dB/m or dB/ft (-0.345 dB/m would be sent as 34500).
4. Waveguide Cutoff Frequency is in KHz (5.3 KHz would be sent as 5300000).
5. Waveguide Loss is in hundred-thousandths of dB/m or dB/ft (-0.345 dB/m would be sent as 34500).

Set Time/Date - Control Byte #8 (08h)
Description: Sets the current time and date.
Bytes to Follow: 7 bytes

1) Hour: 0-23
2) Minute: 0-59
3) Month: 1-12
4) Day: 1-31
5) Year (higher Byte): Treat the two bytes as an integer. E.g. 07h, D1h stands for 2001
6) Year (lower Byte)
7) Daylight Saving (ON/OFF): 0 or 1

SM Returns: 255 (FFh) Operation Complete Byte
 238 (EEh) Time-out Error
Set Reference Number - Control Byte #9 (09h)

Description: The reference number is also known as the trace name. It is the combination of 16 letters, numbers, spaces and the characters "-", ",", ",", and "/". The command saves the trace name to be used with the next trace. The current reference number is found by recalling trace 0 and examining response bytes 39-54.

Bytes to Follow: 16 bytes (ASCII text string)

SM Returns:
- 255 (FFh) Operation Complete Byte
- 238 (EEh) Time-out Error

Serial Port Echo On/Off - Control Byte #10 (0Ah)

Description: Sets the serial port echo mode On/Off.

Serial Port Echo Mode uses the single sweep mode (see control byte #11 (0Bh)). Therefore, at the end of each sweep cycle, the Site Master sends a Sweep Complete Byte #192 (C0h) to the serial port.

This mode activates once the Site Master exits from the remote mode. Serial Port Echo status can’t be saved to/or recalled from saved setups. Cycling power resets the Serial port echo status to Off.

The Serial Port Echo Mode allows run-time handshaking between the Site Master and computer by doing the following:

1) Enter remote mode. Set Serial Port Echo Mode On. Exit remote mode.
2) The Site Master sweeps once and then sends the Sweep Complete Byte.
3) After you receive it. Enter remote mode. Recall sweep 0 (last sweep trace in RAM).
4) Exit remote mode. Send Sweep Trig. Byte #48 (30h) and wait for the next sweep cycle.
5) Repeat steps 2-4

Bytes to Follow: 1 byte

1) Serial Port Echo Status
 - 00h = Off
 - 01h = On

SM Returns:
- 255 (FFh) Operation Complete Byte
- 224 (E0h) Parameter Error: Invalid serial port echo status
- 238 (EEh) Time-out Error

Single Sweep Mode On/Off - Control Byte #11 (0Bh)

Description: Enables or disables the Single Sweep Mode. Single Sweep Mode activates once the Site Master exits from the remote mode.

When the Site Master returns to local mode, the Site Master stops sweeping, waits for either the RUN/HOLD KEY of the Site Master keypad or triggering byte #48 (30h).

Site Master also checks for remote control byte #69 (45h) at the end of each sweep. If present in the buffer, Site Master returns to remote mode (no sweeping, locked keypad).

Bytes to Follow: 1 byte

1) Single Sweep Mode Status
 - 00h = Off
 - 01h = On
Watch-dog Timer On/Off - Control Byte #12 (0Ch)

Description: Enables or Disables the Watch-dog timer.

The Site Master incorporates a Watch-dog Timer for higher reliability in serial communication. In selected control bytes (see control byte summary), the Site Master checks for the time interval between each byte received from the computer. If the time interval exceeds the set time limit (0.5 sec), the Site Master notifies the computer by sending Time-out Byte #238 (EEh). The Site Master discards the data it just received and then waits for the next control byte sequence.

This setting cannot be saved or recalled from a setup. It must be reset after the unit is power-cycled. The default value is Off.

Bytes to Follow: 1 byte
1) Watch-dog timer On/Off
 00h = Off
 01h = On

SM Returns: 255 (FFh) Operation Complete Byte
 224 (E0h) Parameter Error: Invalid watch-dog timer status

Sequence Site Master Calibration – Control Byte #13 (0Dh)

Description: Initiates a calibration step.

The Site Master must be calibrated to give accurate measurements. Calibration is based on frequency range. Once the frequency range is set, sequence the calibration process using this control byte. Measure each component (open, short, load) then trigger the Calculate step. The Calculate step uses the measurements obtained and generates the correction factors.

Upon receiving this control byte any old calibration data is lost. The media type is determined by the second byte. The Site Master does the calibration step specified by the third byte. After the measurements, you must trigger the Calculate step to complete the calibration. **Do not exit remote mode until the calculation is complete.**

Note that the measured trace of each step is not display on the Site Master screen.

After receiving the Calculate byte, the Site Master checks to see if all calibration steps are completed. The Site Master calculates the resulting correction factors and sends an Operation Complete Byte #255 (FFh) to the computer. If all four steps are not complete, the Site Master returns an Operation Incomplete Byte #224 (E0h) and no calculation is performed.

Bytes to Follow: 2 bytes
1) Media to calibrate for
 00h = Coax
 01h = Waveguide
2) Calibration Step to trigger
 01h = open / 1/8th Short
02h = short / 3/8th Short
03h = load
06h = Calculate Calibration Data

SM Returns:
255 (FFh) Operation Complete Byte
224 (E0h) Error: Invalid Cal operation or Cal Incomplete
238 (EEh) Time-out Error

Set Site Master Data Points – Control Byte #14 (0Eh)
Description: Set number of measurement data points for Site Master. See control byte #20 (14h) response bytes 2 and 3 for the current configuration.
Bytes to Follow: 1 byte
1) Not valid in Fast Tune Mode
 00h = 130 Points
 01h = 259 Points
 02h = 517 Points

 Valid only in Fast Tune Mode
 03h = 65 Points
 04h = 43 Points
 05h = 33 Points

SM Returns: 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid Data Point Setting for given mode
238 (EEh) Time-out Error

Set Site Master Limit Beep Status — Control Byte #15 (0Fh)
Description: Enable or disable the limit beep for all limit segments.
Bytes to Follow: 1 byte
1) Status (00h = OFF 01h = ON)

SM Returns: 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid status value
238 (EEh) Time-out Error

Store Sweep Trace – Control Byte #16 (10h)
Description: Saves current trace to the next available memory location.
Note: Any calibration steps performed in remote mode overwrite the trace data in the memory.
Bytes to Follow: 0 bytes
SM Returns: 5 bytes
1-4) Time/Date Stamp (in long integer format, seconds since Jan. 1, 1970)
5) Operation result: 255 (FFh) Operation Complete Byte
 224 (E0h) Out of memory (Memory full)
 238 (EEh) Time-out Error

Recall Sweep Trace – Control Byte #17 (11h)
Description: Queries the Site Master for sweep trace data.
Bytes to Follow: 1 Byte

0 - Last sweep trace before entering remote mode (sweep trace in RAM)
1- 200 = Specific saved sweep number (stored sweeps in Flash memory)

SM Returns:

1-2) # of following bytes
3-4) Model ID (0Eh for the S810C and 0Fh for the S820C)
5-11) Model Number (7 bytes in ASCII)
12-15) Software Version (4 bytes ASCII)
16) Measurement Mode
17-20) Time/Date (in Long Integer)
21-30) Date in String Format (mm/dd/yyyy)
31-38) Time in String Format (hh:mm:ss)
39-54) Reference Number Stamp (16 bytes in ASCII)
55-56) # data points
57) Start Frequency (in KHz) (highest byte)
58) Start Frequency
59) Start Frequency
60) Start Frequency (in KHz) (lowest byte)
61) Stop Frequency (highest byte)
62) Stop Frequency
63) Stop Frequency
64) Stop Frequency (lowest byte)
65) Minimum Frequency Step Size (in KHz) (highest byte)
66) Minimum Frequency Step Size
67) Minimum Frequency Step Size
68) Minimum Frequency Step Size (in KHz) (lowest byte)
69) Scale Top (highest byte)
70) Scale Top
71) Scale Top
72) Scale Top (lowest byte)
73) Scale Bottom (higher byte)
74) Scale Bottom
75) Scale Bottom
76) Scale Bottom (lowest byte)
77) Frequency Marker 1 (higher byte)
78) Frequency Marker 1 (lower byte)
79) Frequency Marker 2 (higher byte)
80) Frequency Marker 2 (lower byte)
81) Frequency Marker 3 (higher byte)
82) Frequency Marker 3 (lower byte)
83) Frequency Marker 4 (higher byte)
84) Frequency Marker 4 (lower byte)
85) Frequency Marker 5 (higher byte)
86) Frequency Marker 5 (lower byte)
87) Frequency Marker 6 (higher byte)
88) Frequency Marker 6 (lower byte)
89) Single Limit Line Value (highest byte)
90) Single Limit Line Value
91) Single Limit Line Value
92) Single Limit Line Value (lowest byte)
93) Multiple Limit Segment #1
94) Multiple Limit Segment Status (01h = On, 00h = Off)
95) Multiple Limit Segment Start X (in KHz) (highest byte)
96) Multiple Limit Segment Start X
97) Multiple Limit Segment Start X
98) Multiple Limit Segment Start X (lowest byte)
99) Multiple Limit Segment Start Y (higher byte)
100) Multiple Limit Segment Start Y (lower byte)
101) Multiple Limit Segment End X (in KHz) (highest byte)
102) Multiple Limit Segment End X
103) Multiple Limit Segment End X
104) Multiple Limit Segment End X (lowest byte)
105) Multiple Limit Segment End Y (higher byte)
106) Multiple Limit Segment End Y (lower byte)
107–162) Repeat bytes 93-106 for segments 2-5
163) Start Distance (highest byte)
164) Start Distance
165) Start Distance
166) Start Distance (lowest byte)
167) Stop Distance (highest byte)
168) Stop Distance
169) Stop Distance
170) Stop Distance (lowest byte)
171) Distance Marker 1 (higher byte)
172) Distance Marker 1 (lower byte)
173) Distance Marker 2 (higher byte)
174) Distance Marker 2 (lower byte)
175) Distance Marker 3 (higher byte)
176) Distance Marker 3 (lower byte)
177) Distance Marker 4 (higher byte)
178) Distance Marker 4 (lower byte)
179) Distance Marker 5 (higher byte)
180) Distance Marker 5 (lower byte)
181) Distance Marker 6 (higher byte)
182) Distance Marker 6 (lower byte)
183) Relative Propagation Velocity (highest byte)
184) Relative Propagation Velocity
185) Relative Propagation Velocity
186) Relative Propagation Velocity (lowest byte)
187) Cable Loss (highest byte)
188) Cable Loss
189) Cable Loss
190) Cable Loss (lowest byte)
191) Status Byte 1: (0b = Off, 1b = On)
 (LSB) bit 0: Marker 1 On/Off
 bit 1: Marker 2 On/Off
 bit 2: Marker 3 On/Off
 bit 3: Marker 4 On/Off
 bit 4: Marker 5 On/Off
 bit 5: Marker 6 On/Off
 bits 6-7: Not Used
192) Status Byte 2: (0b = Off, 1b = On)
 (LSB) bit 0: Marker 2 Delta On/Off
 bit 1: Marker 3 Delta On/Off
bit 2: Marker 4 Delta On/Off
bit 3-7: Not Used

193) Status Byte 3: (0b = Off, 1b = On)
 (LSB) bit 0: single limit line On/Off
 bit 1: CW mode On/Off
 bit 2: Not Used
 bit 3: Not Used
 bit 4: Media (0 = COAX, 1 = WAVEGUIDE)
 bit 5: Cal On/Off
 bit 6: Limit Type (0 = Single; 1 = Multiple)
 bit 7: Unit of Measurement (1 = Metric, 0 = English)

194) Status Byte 4:
 (LSB) bit 0 - 1: DTF Windowing Mode
 bit 1 0
 | |
 0 0 - Rectangular (No Windowing)
 0 1 - Nominal Side Lobe
 1 0 - Low Side Lobe
 1 1 - Minimum Side Lobe
 bit 2 - 7: Not Used

195) Waveguide Loss (highest byte) 7
196) Waveguide Loss
197) Waveguide Loss
198) Waveguide Loss (lowest byte)
199) Waveguide Cutoff Freq (in KHz) (highest byte)
200) Waveguide Cutoff Freq
201) Waveguide Cutoff Freq
202) Waveguide Cutoff Freq (lowest byte)
203-228) Not Used (26 bytes)
229-492) Sweep Data (33 points * 8 bytes/point = 264 bytes)
229-572) Sweep Data (43 points * 8 bytes/point = 344 bytes)
229-748) Sweep Data (65 points * 8 bytes/point = 520 bytes)
229-1268) Sweep Data (130 points * 8 bytes/point = 1040 bytes)
229-2300) Sweep Data (259 points * 8 bytes/point = 2072 bytes)
229-4364) Sweep Data (517 points * 8 bytes/point = 4136 bytes)

8 bytes for each data point
1. Gamma MSB
2. Gamma
3. Gamma
4. Gamma LSB
5. Phase MSB
6. Phase
7. Phase
8. Phase LSB

For invalid sweeps (empty stored sweep locations): 11 bytes.
1-2) Number of Following Bytes (9 bytes for invalid sweep recall)
3-4) Model # (unsigned integer, 0Eh for the S810C and 0Fh for the S820C)
5-11) Extended Model # (7 bytes in ASCII)

Invalid sweep location: 1 byte
224 (E0): Parameter error: Invalid sweep location

S810C/S820C PM
Notes:

\[
\text{return loss/INC_{REF}} = -20000 \times \log(\text{Gamma}/1000) \\
\text{VSWR} = (1+\text{Gamma})/(1-\text{Gamma}) \\
\text{Incident} = \text{Gamma[Real]} \\
\text{Reflected} = \text{Gamma[Real]} \\
\text{Phase compares the reflected to the incident (reference)} \\
\text{Gamma is in thousandths (of ratio)} \\
\text{Phase is in tenths of degree}
\]

1. 00h: RL Frequency
 01h: SWR Frequency
 02h: Cable Loss Frequency
 10h: RL Distance
 11h: SWR Distance
 40h: Power Monitor
 74h: Fast Tune RL
 75h: Fast Tune SWR

2. “value” sent as (value * 1,000)

3. Display/Data Point
 To convert from “point” to frequency:
 \[((\text{stop frequency} - \text{start frequency}) / (\#\text{data points}-1)) \times \text{point}\) + \text{start frequency}
 where start frequency is stored in bytes 57-60, stop frequency is stored in 61-64 and \#data points is
 stored in bytes 55-56

4. Distance data uses units 1/100,000m (or feet)

5. Display/Data Point
 To convert from “point” to distance:
 \[((\text{stop distance} - \text{start distance}) / (\#\text{data points}-1)) \times \text{point}\) + \text{start distance}
 where start frequency is stored in bytes 163-166, stop frequency is stored in 167-170 and \#data points
 is stored in bytes 55-56

6. Relative Propagation Velocity uses units 1/100,000

7. Loss uses units 1/100,000 dB/m or 1/100,000 dB/ft.

Save System Setup - Control Byte #18 (12h)

Description: Saves current system setup parameters to a specific setup store location.

The Site Master saves all parameters described in System Status Query - Control Byte #20 (14h)(except Serial Port Echo Status) to the specified store location. Store location 0 is the run-time setup of the Site Master. It holds the power-on defaults of the Site Master.

Bytes to Follow:

1 byte
1) Location to save system setup parameters, 0 - 10

SM Returns:

255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid store location
238 (EEh) Time-out Error
Recall System Setup - Control Byte #19 (13h)

Description: Recalls system setup parameters from a specific store location.

The Site Master recalls all parameters described in System Status Query (14h) (except Serial Port Echo Status) from the specified store location. The recalled setup does not automatically become the default setup when exiting remote.

You may want to save the recalled setup as the run-time setup by saving it to setup location 0 (which holds the power-on defaults). See control byte #18 (12h) for details.

Bytes to Follow: 1 byte
1) Location from which to recall system setup parameters:
 0 = Run time setup
 1 - 10 = Saved setups
 255 = Default setup

SM Returns: 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid store location or no saved setup
238 (EEh) Time-out Error

Query System Status - Control Byte #20 (14h)

Description: Queries the Site Master for current system settings.

The current state of the Site Master represents the state after last successful remote control operation. For example, change the start frequency to another valid frequency while in remote mode, then execute control byte #20. The new start frequency will be returned in bytes 4-7, even though no sweep has been performed with that frequency.

Bytes to Follow: 0 bytes

SM Returns: 176 bytes
1) Measurement Mode
2) Site Master Mode Data Points (higher byte)
3) Site Master Mode Data Points (lower byte)
4) Start Frequency (in KHz) (highest byte)
5) Start Frequency
6) Start Frequency
7) Start Frequency (lowest byte)
8) Stop Frequency (in KHz) (highest byte)
9) Stop Frequency
10) Stop Frequency
11) Stop Frequency (lowest byte)
12) Scale Start (higher byte)
13) Scale Start
14) Scale Start
15) Scale Start (lower byte)
16) Scale Stop (higher byte)
17) Scale Stop
18) Scale Stop
19) Scale Stop (lower byte)
20) Frequency Marker 1 (higher byte)
21) Frequency Marker 1 (lower byte)
22) Frequency Marker 2 (higher byte)³
23) Frequency Marker 2 (lower byte)
24) Frequency Marker 3 (higher byte)³
25) Frequency Marker 3 (lower byte)
26) Frequency Marker 4 (higher byte)³
27) Frequency Marker 4 (lower byte)
28) Frequency Marker 5 (higher byte)³
29) Frequency Marker 5 (lower byte)
30) Frequency Marker 6 (higher byte)³
31) Frequency Marker 6 (lower byte)
32) Single Limit Line Value (highest byte)²
33) Single Limit Line Value
34) Single Limit Line Value
35) Single Limit Line Value (lowest byte)
36) Multiple Limit Segment # (1)
37) Multiple Limit Segment Status
38) Multiple Limit Segment Start X (in KHz) (highest byte)
39) Multiple Limit Segment Start X
40) Multiple Limit Segment Start X
41) Multiple Limit Segment Start X (lowest byte)²
42) Multiple Limit Segment Start Y (higher byte)
43) Multiple Limit Segment Start Y (lower byte)
44) Multiple Limit Segment End X (in KHz) (highest byte)
45) Multiple Limit Segment End X
46) Multiple Limit Segment End X
47) Multiple Limit Segment End X (lowest byte)
48) Multiple Limit Segment End Y (higher byte)²
49) Multiple Limit Segment End Y (lower byte)
50-105) Repeat bytes 36-49 for segments 2-5
106) Start Distance (highest byte)⁴
107) Start Distance
108) Start Distance
109) Start Distance (lowest byte)
110) Stop Distance (highest byte)⁴
111) Stop Distance
112) Stop Distance
113) Stop Distance (lowest byte)
114) Distance Marker 1 (higher byte)⁵
115) Distance Marker 1 (lower byte)
116) Distance Marker 2 (higher byte)⁵
117) Distance Marker 2 (lower byte)
118) Distance Marker 3 (higher byte)⁵
119) Distance Marker 3 (lower byte)
120) Distance Marker 4 (higher byte)⁵
121) Distance Marker 4 (lower byte)
122) Distance Marker 5 (higher byte)⁵
123) Distance Marker 5 (lower byte)
124) Distance Marker 6 (higher byte)⁵
125) Distance Marker 6 (lower byte)
126) Relative Propagation Velocity (highest byte)⁶
127) Relative Propagation Velocity
128) Relative Propagation Velocity
129) Relative Propagation Velocity (lowest byte)
130) Cable Loss (highest byte)
131) Cable Loss
132) Cable Loss
133) Cable Loss (lowest byte)
134) Status Byte 1: (0b = Off, 1b = On)
 (LSB) bit 0: Site Master Marker 1 On/Off
 bit 1: Site Master Marker 2 On/Off
 bit 2: Site Master Marker 3 On/Off
 bit 3: Site Master Marker 4 On/Off
 bit 4: Site Master Marker 5 On/Off
 bit 5: Site Master Marker 6 On/Off
 bit 6-7: Not Used
135) Status Byte 2: (0b = Off, 1b = On)
 (LSB) bit 0: not used
 bit 1: Site Master Marker 2 delta On/Off
 bit 2: Site Master Marker 3 delta On/Off
 bit 3: Site Master Marker 4 delta On/Off
 bit 4-7: Not Used
136) Status Byte 3: (0b = Off, 1b = On)
 (LSB) bit 0: Single Limit Status On/Off
 bit 1-2: Not Used
 bit 3: Media (0b=COAX, 1b=WAVEGUIDE)
 bit 4: Site Master Cal On/Off
 bit 6: Site Master Limit Beep On/Off
 bit 7: Not Used
137) Status Byte 4:
 (LSB) bit 0 - 1: DTF Windowing Mode
 bit: 1 0
 | | 0 0 - Rectangular (No Windowing)
 | 0 1 - Nominal Side Lobe
 | 1 0 - Low Side Lobe
 | 1 1 - Minimum Side Lobe
 bit 2 - 7: Not Used
138) Status Byte 5:
 (LSB) bit 0: Fixed CW mode On/Off
 bit 1: Currently Unused
 bit 2: LCD Back Light On/Off
 bit 3: Measurement Unit Metric/English (0b = English, 1b = Metric)
 bit 4: High Power On/Off
 bit 5: Bias Tee On/Off
 bit 6 - 7: Not Used
139) Serial Port Echo Status On/Off (1b=On, 0b=Off)
140) Printer Type (see control byte #30 for available printers)
141) Trace Overlay Status
142) Trace Overlay Trace Number
143) Cutoff Frequency (in KHz) (highest byte)
144) Cutoff Frequency
145) Cutoff Frequency
146) Cutoff Frequency (lowest byte)
147) Waveguide 1/8th Offset Length (highest byte)
148) Waveguide 1/8th Offset Length
149) Waveguide 1/8th Offset Length
150) Waveguide 1/8th Offset Length (lowest byte)
151) Waveguide 3/8th Offset Length (highest byte)
152) Waveguide 3/8th Offset Length
153) Waveguide 3/8th Offset Length
154) Waveguide 3/8th Offset Length (lowest byte)
155) Waveguide Cutoff Frequency (in KHz) (highest byte)
156) Waveguide Cutoff Frequency
157) Waveguide Cutoff Frequency
158) Waveguide Cutoff Frequency (lowest byte)
159) Waveguide Loss (highest byte)
160) Waveguide Loss
161) Waveguide Loss
162) Waveguide Loss (lowest byte)
163) Coax connector type
164) LCD Contrast
165) RTC Voltage reading (highest byte)
166) RTC Voltage reading (lowest byte)
167) PCB Revision Number (highest byte)
168) PCB Revision Number (lowest byte)
169-176) Not Used

Notes:

1. 00h: RL Frequency
 01h: SWR Frequency
 02h: Cable Loss Frequency
 10h: RL Distance
 11h: SWR Distance
 40h: Power Monitor
 74h: Fast Tune RL
 75h: Fast Tune SWR

2. “value” sent as (value * 1,000)

3. Display/Data Point
 To convert from “point” to frequency:
 \[(((\text{stop frequency} - \text{start frequency}) / (\#\text{data points}-1)) \times \text{point}) + \text{start frequency} \]
 where start frequency is stored in bytes 57-60, stop frequency is stored in 61-64 and #data points is stored in bytes 55-56

4. Distance data uses units 1/100,000m (or feet)

5. Display/Data Point
 To convert from “point” to distance:
 \[(((\text{stop distance} - \text{start distance}) / (\#\text{data points}-1)) \times \text{point}) + \text{start distance} \]
 where start frequency is stored in bytes 163-166, stop frequency is stored in 167-170 and #data points is stored in bytes 55-56

6. Relative Propagation Velocity uses units 1/100,000

7. Loss uses units 1/100,000 dB/m or 1/100,000 dB/ft.

8. Offset Length uses units 1/100,000 mm
Trigger Self-Test - Control Byte #21 (15h)

Description: Triggers a self test on the Site Master.
Bytes to Follow: 0 bytes
SM Returns: 9 bytes
 1) Self-test report: (0b = Fail, 1b = Pass)
 (LSB) bit 0: Phase Lock Loop
 bit 1: Integrator
 bit 2: Battery
 bit 3: Temperature
 bit 4: EEPROM read/write
 bit 5-7: Not Used.
 2) Battery Voltage (higher byte)
 3) Battery Voltage (lower byte)
 4) Temperature (higher byte)
 5) Temperature (lower byte)
 6) Lock Fail Counter (higher byte)
 7) Lock Fail Counter (lower byte)
 8) Integrator Fail Counter (higher byte)
 9) Integrator Fail Counter (lower byte)

Notes:
1. Battery Voltage in 1/10th of a Volt (e.g., 124 = 12.4 Volts)
2. Temperature in 1/10th of degree Celsius (e.g., 362 = 36.2 °C) or degree Fahrenheit (e.g., 934 = 93.4 °F), depending on the current measurement unit (metric or English) selected.

Read Fail Counters - Control Byte #22 (16h)

Description: Reads the value of the Lock Fail Counter and Analog Integrator Fail Counter. This duplicates the functionality of the front panel icons. If the Analog Integrator takes too long to reach measurement level, due to low battery or an interfering signal, the count increments. If the Phase lock circuitry fails, its count increments. You check these counters at the end of the sweep to ensure a successful measurement.

The Site Master preserves the value of each counter when power is turned off.

Bytes to Follow: 0 byte
SM Returns: 4 bytes (unsigned integer)
 1) Lock fail counter (high byte)
 2) Lock fail counter (low byte)
 3) Integrator fail counter (high byte)
 4) Integrator fail counter (low byte)

Clear Fail Counters - Control Byte #23 (17h)

Description: Resets the Lock Fail Counter and Integrator Fail Counter.
Bytes to Follow: 0 bytes
SM Returns: Operation Complete Byte #255 (FFh)
Query Trace Names - Control Byte #24 (18h)

Description: Returns a list of all saved traces.
Bytes to Follow: 0 bytes
SM Returns: 2 + 41 x number of save traces
1-2) # of save traces
for each trace:
 1-2) Trace Index
 3) Measurement Mode (refer to Control Byte #8)
 4-21) Date/Time in string format ("MM/DD/YYYY HH:MM:SS")
 22-25) Date/Time as Unsigned Long Integer
 26-41) Trace Name (16 bytes)

Delete Sweep Trace - Control Byte #25 (19h)

Description: Delete single or all stored sweep traces in Site Master.
Bytes to Follow: 1 byte
 0 - Delete all traces
 X – Delete single trace #X
SM Returns: Operation Complete Byte #255 (FFh)

Upload Sweep Trace — Control Byte #26 (1Ah)

Description: Uploads a sweep trace to the Site Master.
Bytes to Follow: 735, 1255, 2287, or 4351 Bytes (depending on resolution)
 1-2) # of following bytes
 3) Measurement Mode
 4-7) Time/Date in Long Integer (seconds since Jan. 1, 1970)
 8-17) Date in String Format (mm/dd/yyyy)
 18-25) Time in String Format (hh:mm:ss)
 26-41) Reference number stamp (16 bytes in ASCII)
 42-43) # data points
 44) Start Frequency (in KHz) (highest byte)
 45) Start Frequency
 46) Start Frequency
 47) Start Frequency (lowest byte)
 48) Stop Frequency (in KHz) (highest byte)
 49) Stop Frequency
 50) Stop Frequency
 51) Stop Frequency (lowest byte)
 52) Minimum Frequency Step Size (in KHz) (Highest byte)
 53) Minimum Frequency Step Size
 54) Minimum Frequency Step Size
 55) Minimum Frequency Step Size (lowest byte)
 56) Scale Top (highest byte)
 57) Scale Top
 58) Scale Top
 59) Scale Top (lowest byte)
60) ScaleBottom (higher byte) 2
61) Scale Bottom
62) Scale Bottom
63) Scale Bottom (lowest byte)
64) Frequency Marker 1 (higher byte) 3
65) Frequency Marker 1 (lower byte)
66) Frequency Marker 2 (higher byte) 3
67) Frequency Marker 2 (lower byte)
68) Frequency Marker 3 (higher byte) 3
69) Frequency Marker 3 (lower byte)
70) Frequency Marker 4 (higher byte) 3
71) Frequency Marker 4 (lower byte)
72) Frequency Marker 5 (higher byte) 3
73) Frequency Marker 5 (lower byte)
74) Frequency Marker 6 (higher byte) 3
75) Frequency Marker 6 (lower byte)
76) Single Limit Line value (highest byte) 2
77) Single Limit Line value
78) Single Limit Line value
79) Single Limit Line value (lowest byte)
80) Multiple Limit Segment #(1)
81) Multiple Limit Segment Status
82) Multiple Limit Segment Start X (in KHz)(highest byte)
83) Multiple Limit Segment Start X
84) Multiple Limit Segment Start X
85) Multiple Limit Segment Start X (lowest byte)
86) Multiple Limit Segment Start Y (higher byte) 2
87) Multiple Limit Segment Start Y (lower byte)
88) Multiple Limit Segment End X (in KHz)(highest byte)
89) Multiple Limit Segment End X
90) Multiple Limit Segment End X
91) Multiple Limit Segment End X (lowest byte)
92) Multiple Limit Segment End Y (higher byte) 2
93) Multiple Limit Segment End Y (lower byte)
94–149) Repeat bytes 80-93 for segments 2-5
150) Start Distance (highest byte) 4
151) Start Distance
152) Start Distance
153) Start Distance (lowest byte)
154) Stop Distance (highest byte) 4
155) Stop Distance
156) Stop Distance
157) Stop Distance (lowest byte)
158) Distance Marker 1 (higher byte) 5
159) Distance Marker 1 (lower byte)
160) Distance Marker 2 (higher byte) 5
161) Distance Marker 2 (lower byte)
162) Distance Marker 3 (higher byte) 5
163) Distance Marker 3 (lower byte)
164) Distance Marker 4 (higher byte) 5
165) Distance Marker 4 (lower byte)
166) Distance Marker 5 (higher byte) 5
167) Distance Marker 5 (lower byte)
168) Distance Marker 6 (higher byte)
169) Distance Marker 6 (lower byte)
170) Relative Propagation Velocity (highest byte)
171) Relative Propagation Velocity
172) Relative Propagation Velocity
173) Relative Propagation Velocity (lowest byte)
174) Cable Loss (highest byte)
175) Cable Loss
176) Cable Loss
177) Cable Loss (lowest byte)
178) Status Byte 1: (0b = Off, 1b = On)
 (LSB) bit 0: Marker 1 On/Off
 bit 1: Marker 2 On/Off
 bit 2: Marker 3 On/Off
 bit 3: Marker 4 On/Off
 bit 4: Marker 5 On/Off
 bit 5: Marker 6 On/Off
 bit 6-7: Not Used
179) Status Byte 2: (0b = Off, 1b = On)
 (LSB) bit 0: Marker 2 Delta On/Off
 bit 1: Marker 3 Delta On/Off
 bit 2: Marker 4 Delta On/Off
 bit 3-7: Not Used
180) Status Byte 3: (0b = Off, 1b = On)
 (LSB) bit 0: Single Limit On/Off
 bit 1: CW mode On/Off
 bit 2-3: Not Used
 bit 4: Media (0=COAX, 1=WAVEGUIDE)
 bit 5: Cal On/Off
 bit 6: Limit Type (0b = Single; 1b = multiple)
 bit 7: Unit of measurement (1b = Metric, 0b = English)
181) Status Byte 4:
 (LSB) bit 0 - 1: DTF Windowing Mode
 bit: 1 0
 0 0 - Rectangular (No Windowing)
 0 1 - Nominal Side Lobe
 1 0 - Low Side Lobe
 1 1 - Minimum Side Lobe
 bit 2 - 7: Not Used
182) Waveguide Loss (highest byte)
183) Waveguide Loss
184) Waveguide Loss
185) Waveguide Loss (lowest byte)
186) Waveguide Cutoff Freq (in KHz)(highest byte)
187) Waveguide Cutoff Freq
188) Waveguide Cutoff Freq
189) Waveguide Cutoff Freq (lowest byte)
190-215) Reserved Bytes (26 bytes)
216-479) Sweep Data (33 points * 8 bytes/point = 264 bytes)
216-559) Sweep Data (43 points * 8 bytes/point = 344 bytes)
<table>
<thead>
<tr>
<th>Range</th>
<th>Sweep Data</th>
<th>Data Points</th>
<th>Bytes/Point</th>
<th>Total Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>216- 735</td>
<td>(65 points)</td>
<td>8 bytes</td>
<td>520 bytes</td>
<td></td>
</tr>
<tr>
<td>216-1255</td>
<td>(130 points)</td>
<td>8 bytes</td>
<td>1040 bytes</td>
<td></td>
</tr>
<tr>
<td>216-2287</td>
<td>(259 points)</td>
<td>8 bytes</td>
<td>2072 bytes</td>
<td></td>
</tr>
<tr>
<td>216-4351</td>
<td>(517 points)</td>
<td>8 bytes</td>
<td>4136 bytes</td>
<td></td>
</tr>
</tbody>
</table>

8 bytes for each data point:
1. Gamma MSB
2. Gamma
3. Gamma
4. Gamma LSB
5. Phase MSB
6. Phase
7. Phase
8. Phase LSB

SM Returns:
- 255 (FFh) Operation Complete Byte
- 224 (E0h) Parameter Error: Not enough bytes transferred
- 225 (E1h) Memory Error: Not enough memory in SM to store
- 238 (EEh) Time-out Error

Notes:
- return loss = \(-20 \times \log(\text{Gamma})\)
- \(\text{VSWR} = (1+\text{Gamma})/(1-\text{Gamma})\)

Phase compares the reflected to the incident (reference):

1. 00h: RL Frequency
2. 01h: SWR Frequency
3. 02h: Cable Loss Frequency
4. 10h: RL Distance
5. 11h: SWR Distance
6. 40h: Power Monitor
7. 74h: Fast Tune RL
8. 75h: Fast Tune SWR

2. “value” sent as (value \times 1,000)

3. **Display/Data Point**
 - To convert from “point” to frequency:
 \(((\text{stop frequency} - \text{start frequency}) / (\#\text{data points}-1)) \times \text{point}\) + \text{start frequency}

 where start frequency is stored in bytes 57-60, stop frequency is stored in 61-64 and \#data points is stored in bytes 55-56

4. Distance data uses units 1/100,000m (or feet)

5. **Display/Data Point**
 - To convert from “point” to distance:
 \(((\text{stop distance} - \text{start distance}) / (\#\text{data points}-1)) \times \text{point}\) + \text{start distance}

 where start frequency is stored in bytes 163-166, stop frequency is stored in 167-170 and \#data points is stored in bytes 55-56

6. Relative Propagation Velocity uses units 1/100,000

7. Loss uses units 1/100,000 dB/m or 1/100,000 dB/ft.
Query Sweep Memory - Control Byte #27 (1Bh)

Description: Queries SM for percentage of memory that is available for trace storage.
Bytes to Follow: 0 Bytes
SM Returns: 1 byte - % of memory currently used (0 to 100)

Select Printer Type - Control Byte #30 (1Eh)

Description: Select Printer Type
Bytes to Follow: 1 byte
Printer ID
 0 – Epson Stylus Models
 1 – Epson LQ Models
 2 – Citizen PN Models
 3 – NEC Superscript Models
 4 – NEC Silentwriter Models
 5 – Seiko DPU 411, 414 Models
 6 – Canon BJ C 50
 7 – Canon BJ C 80
 8 – Canon BJ C 250
 9 – Canon BJ C 4400
 10 – HP DJ 340, 350
 11 – HP DJ 400 Series
 12 – HP DJ 500 Series
 13 – HP DJ 600 Series
 14 – HP DJ 800 Series
 15 – HP DJ 1120
 16 – HP LJ 6L, 6P, 4000
 17 – Epson Esc/P Compatible
 18 – Epson Esc/P2 Compatible
 19 – Epson Esc/P Raster Compatible
 20 – HP PCL3 Compatible

SM Returns: Operation Complete Byte #255 (FFh)

Select DTF Windowing - Control Byte #31 (1Fh)

Description: Select DTF Windowing Methods.
DTF windowing allows you to make a trade off between side lobe height and resolution.
Bytes to Follow: 1 byte
 00h - Rectangular (finest resolution, highest side lobes)
 01h - Nominal Side Lobe (balance between resolution and side lobes)
 02h - Low Side Lobe
 03h - Minimum Side Lobe

SM Returns: 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid DTF Windowing Method
238 (EEh) Time-out Error
Set Trace Math - Control Byte #32 (20h)
Description: Setup trace math operation and trace.
Bytes to Follow: 2 bytes
 1) Trace Math Operation (0 to 2)
 00h = Off
 01h = Subtraction
 02h = Addition
 2) Trace on which to Perform Math Operation on (1 to 200)
SM Returns: 255 (FFh) Operation Complete Byte
 224 (E0h) Parameter Error: Invalid Trace Math Operation
 238 (EEh) Time-out Error

Set Trace Overlay - Control Byte #34 (22h)
Description: Setup trace overlay operation and trace.
Bytes to Follow: 2 bytes
 1) Trace Overlay Operation (0 to 1)
 00h = Off
 01h = On
 2) Trace to Perform Overlay Operation on (1 to 200)
SM Returns: 255 (FFh) Operation Complete Byte
 224 (E0h) Parameter Error: Invalid Trace Overlay Operation
 238 (EEh) Time-out Error

Get Options - Control Byte #37 (25h)
Description: Queries the options installed on the Site Master, returns a list as an ASCII string.
Bytes to Follow: 0 bytes
SM Returns: 2-4 bytes, depending on the options
Possible Option is “5” for Power Monitor.
If NO options are installed: “None”

Query Power Level - Control Byte #39 (27h)
Description: Return Power Level at detector Port
This control byte contains all the information you need to determine just about anything about a power monitor measurement.
Bytes to Follow: 0 bytes
SM Returns: 21 bytes (0b = Off, 1b = On)
 1) Status Byte (LSB)
 bit 0: Unit (0b - Watt/%, 1b - dBm/dBr)
 bit 2: Relative Mode On/Off
 bit 3: Offset Mode On/Off
bit 4: Zero Mode On/Off
bit 5-7: Not Used
2-5) Relative Mode reference Power Level in dBm
6-9) Offset Mode Offset in dB
10-13) Zero Mode Power Level in dBm
14-17) Absolute Power Level in dBm
18-21) Power in dBm or dBr

Notes:

1. You can query power level without setting power monitor mode ON.
2. Absolute Power of -100 indicates a hardware failure (power monitor mode unavailable or RF detector not connected).
3. Power is returned in two's complement signed format, and is 1000 times the dBm value. Power levels are sent back as signed values. To get their correct decimal values, users must take the two's complement of them.
 For example, let's say the absolute power level is measured at -50 dBm. This will be sent by the unit as -50,000 decimal (remember, the values are sent as thousandths of dBm). The equivalent four hexadecimal bytes are FF, FF, 3C, B0 (FFFF 3CB0). The user must first take the logical inverse of this (the "not" of each of the bits; if the bit is a 1, it becomes a 0 and vice-versa). The result will be 0000 C34F. Now the user must add 1. The result will be 0000 C350. The equivalent decimal value is (50,000). Now add the negative sign since the first bit in the original number (FFFF 3CB0) was a “1” (“F” in binary form is “1111”). Now we have -50,000. Finally, since the power levels are sent as thousandths of dBm, divide by 1000. The result is -50.
4. Relative power is in 1000th of dBr.
5. Offset is in 1000th of dB.

Set Power Monitor Unit - Control Byte #40 (28h)
Description: Set Power Monitor unit to watts or dBm.
Bytes to Follow: 1 byte
00h = Watt (% if in relative mode)
01h = dBm (dBr if in relative mode)
SM Returns: 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid power monitor unit
238 (EEh) Time-out Error

Relative Mode On/Off - Control Byte #41 (29h)
Description: Enable or disable Power Monitor Relative Mode
Bytes to Follow: 1 byte
00h = Off
01h = On w/ trigger (use the current power level as a reference power level)
SM Returns: 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid parameter
238 (EEh) Time-out Error
Offset Mode On/Off - Control Byte #42 (2Ah)

Description: Enable or disable Power Monitor Offset Mode
Bytes to Follow: 5 byte
1) On/Off (01h = On, 00h = Off)
2 - 5) Offset Power Level in dB
SM Returns: 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid parameter
238 (EEh) Time-out Error
Notes:
1. If you turn the Offset mode off, you must still send the other bytes. Bytes 2 - 5 will be ignored.

Zero Mode On/Off - Control Byte #43 (2Bh)

Description: Enable or disable Power Monitor Zeroing Mode.
Bytes to Follow: 1 byte
00h = Off
01h = On with trigger (current power level is referenced as -80 dBm)
SM Returns: 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid state
238 (EEh) Time-out Error

Trigger Sweep - Control Byte #48 (30h)

Description: Causes the Site Master to perform a sweep if it is in single sweep or serial port echo mode.
Bytes to Follow: 0 bytes
SM Returns: Sweep Complete Byte # 192 (C0h)
Notes:
1. If the Site Master is not in single sweep or serial port echo mode, this byte does nothing.
2. This command is for local mode operation. If the Site Master is in remote mode, sending the byte does nothing.

Check Battery Status - Control Byte #50 (32h)

Description: Return Smart Battery status.
Bytes to Follow: 0 bytes
SM Returns: 17 bytes
1-2) Battery Status flags (Refer to Smart Battery Data Spec 5.1.2.1)
3-4) State of Charge (unsigned integer 0 to 100(%) Full)
5-6) Battery Voltage (unsigned integer 0 to 65535 in mV)
7-8) Battery Current (signed integer -32,768 to +32,768 mA, positive = Charging)
9-10) Battery Avg current (signed integer -32,768 to +32,768 mA, positive = charging)
11-12) Average Time to Empty (unsigned integer 0 to 65535 minute)
13-14) Battery Charge Cycle Count (unsigned integer 0 to 65535 cycles)
Set Marker to Peak - Control Byte #51 (33h)

Description: Obtains Marker status information for peak value in the current trace. The value of the byte for marker number should be the marker number - 1. For example, to set marker 1 to peak, send command number 51 followed by 0.

The return value is a display point. To calculate the corresponding frequency (or distance): Marker Frequency = (resolution - 1) * (marker freq - start freq).

Bytes to Follow: 1 byte
1) Marker Number (00h - 03h)

SM Returns:
2 bytes
1) Marker Position at Peak (highest byte)
2) Marker Position at Peak (lowest byte)

Set Marker to Valley - Control Byte #52 (34h)

Description: Obtains Marker status information for valley value in the current trace. The value of the byte for marker number should be the marker number - 1. For example, to set marker 1 to valley, send command number 52 followed by 0.

The return value is a display point. To calculate the corresponding frequency (or distance): Marker Frequency = (resolution - 1) * (marker freq - start freq).

Bytes to Follow: 1 byte
1) Marker Number (00h - 03h)

SM Returns:
2 bytes
1) Marker Position at Valley (highest byte)
2) Marker Position at Valley (lowest byte)

Set Site Master Single Limit - Control Byte #55 (37h)

Description: Sets the position and On/Off Status of the Limit Lines.

S8X0C supports Single Limit Line. The Control Byte will set the limit status and the limit value for current measurement mode.

See control byte #20 (14h) response byte 32 to 35 (1Ch to 9Ah) for current Site Master limit location and byte #136 for current single limit status.

Bytes to Follow: 3 bytes:
1) Limit Status (01h = ON; 00h = Off)
2) Limit Y (highest byte)
3) Limit Y (lowest byte)

SM Returns:
255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid limit segment, limit status, or limit value
238 (EEh) Time-out Error
Notes: Limit Value depends on the current display mode selected.

Return Loss & Cable Loss:
Limit is in thousandths of a dB
Maximum value sent is 54000 which represents 54.00 dB
Minimum value sent is 0 which represents 0.0 dB

SWR:
Limit is in thousandths (of ratio)
Maximum value sent is 65530 which represents 65.53
Minimum value sent is 1000 which represents 1.00.

Automatically Save Runtime Setup - Control Byte #64 (40h)
Description: Automatically save the runtime setup when exiting remote mode.
This flag must be set once per power cycle of the Site Master. It returns to its default value when the unit is turned off. The default value is (0), DO NOT automatically save the runtime setup.

Bytes to Follow: 1 byte
1) Save Runtime Setup On/Off
00h = Off (default)
01h = On

SM Returns: 255 (FFh) Operation Complete
238 (EEh) Time Out Error

Enter Remote Mode - Control Byte #69 (45h)
Description: Enter remote mode then send model number and firmware version to the computer

Bytes to Follow: 0 bytes

SM Returns: 13 bytes
1-2) Model #(0Eh for the S810C and 0Fh for the S820C)
3-9) Extended Model #(7 bytes in ASCII)
10-13) Software Version (4 bytes in ASCII)

The computer sends Enter Remote mode byte #69 (45h) to the Site Master and waits for a response.

Since the Site Master polls its serial port buffer at the end of each sweep, the computer must wait until the Site Master sends the return bytes before sending a new control byte. Otherwise, the new control byte overwrites the old one (saying enter remote) and the Site Master does not respond as expected.

Once in remote mode, the Site Master stops sweeping and a Remote Mode Indicator appears on the LCD.

The Site Master sends its model and software version numbers to the computer. The Site Master is now able to take multiple control bytes. It waits for the next control byte.
Enter Remote Mode Immediately - Control Byte #70 (46h)

Description: Enter remote mode in the middle of a sweep, then send the model number and firmware version to the computer.

Bytes to Follow: 0 bytes

SM Returns:
- 13 bytes
 - 1-2) Model # (0Eh for the S810C and 0Fh for the S820C)
 - 3-9) Extended Model # (7 bytes in ASCII)
 - 10-13) Software Version (4 bytes in ASCII)

The computer sends Enter Remote Mode Immediately byte #70 (46h) to the Site Master and waits for a response. This control byte causes the unit to enter remote mode immediately. Note that this could result in incomplete sweep data. Use control byte #69 if complete data is required.

Once in remote mode, the Site Master stops sweeping. A Remote Mode Indicator appears on the LCD.

The Site Master sends its model and software version numbers to the computer. The Site Master is now able to take multiple control bytes. It waits for the next control byte.

Write Custom Cable - Control Byte #80 (50h)

Description: Write a cable parameter in the custom cable list.

Bytes to Follow:
- 25 bytes
 - 1) Not Used
 - 2) Cable List index (0 - 24)
 - 3-17) Cable Description (string)
 - 18) Propagation Velocity (highest byte)\(^1\)
 - 19) Propagation Velocity
 - 20) Propagation Velocity
 - 21) Propagation Velocity (lowest byte)
 - 22) Insertion Loss (highest byte)\(^2\)
 - 23) Insertion Loss
 - 24) Insertion Loss
 - 25) Insertion Loss (lowest byte)

SM Returns:
- 255 (FFh) Operation Complete
- 224 (E0h) Parameter Error
- 238 (EEh) Time Out Error

Notes:
1. Relative Propagation Velocity uses units 1/100,000
2. Loss uses units 1/100,000 dB/m or 1/100,000 dB/ft.
Recall Custom Cable - Control Byte #81 (51h)

Description: Query a cable in the custom cable list.

Bytes to Follow: 2 byte
1) Not Used
2) Cable list index (0-24)

SM Returns: 24 bytes
1) Upper bound of Custom Cable Index
2 - 16) Cable Description (string)
17) Propagation Velocity (highest byte)
18) Propagation Velocity
19) Propagation Velocity
20) Propagation Velocity (lowest byte)
21) Insertion Loss (highest byte)
22) Insertion Loss
23) Insertion Loss
24) Insertion Loss (lowest byte)

Notes:
1. Relative Propagation Velocity uses units 1/100,000
2. Loss uses units 1/100,000 dB/m or 1/100,000 dB/ft.

Set Site Master Marker(Peak/Valley) - Control Byte #129 (81h)

Description: Sets an individual marker in current measurement mode.

The Site Master sets the position of a marker by its relative position on the graph. The lowest position is 0 at the start frequency (or distance). The highest position is at the stop frequency (or distance). For example, if the resolution is 130 Data Points, the start frequency is at point 0 and the stop frequency is at point 129. To calculate the data point form a frequency(or distance) do the following:

\[
\text{Point} = \frac{(\text{resolution} - 1) \times (\text{marker frequency} - \text{start frequency})}{(\text{stop frequency}) - (\text{start frequency})}
\]

The On/Off Status of a Marker can be toggled using this control byte.

Bytes to Follow: 2 bytes
1) Marker Number (01h = marker 1, 02h = marker 2, 03h = marker 3, 04h = marker 4, 05h = marker 5, 06h = marker 6)
2) Marker Search Type (Peak=01h, Valley = 00h)

SM Returns: OK: 3 bytes
1) Marker Position (higher byte)
2) Marker Position (lower byte)
3) 255 (FFh) Operation Complete Byte
 224 (E0h) Parameter Error: Invalid marker, marker status, or marker position
 238 (EEh) Time-out Error
Set SOSL Cal Parameter – Control Byte #130 (82h)

Description: Set the waveguide parameters

Bytes to Follow: 12 bytes
1) Waveguide 1/8th Offset Length (highest byte)
2) Waveguide 1/8th Offset Length
3) Waveguide 1/8th Offset Length
4) Waveguide 1/8th Offset Length (lowest byte)
5) Waveguide 3/8th Offset Length (highest byte)
6) Waveguide 3/8th Offset Length
7) Waveguide 3/8th Offset Length
8) Waveguide 3/8th Offset Length (lowest byte)
9) Waveguide Cutoff Frequency (in KHz) (highest byte)
10) Waveguide Cutoff Frequency
11) Waveguide Cutoff Frequency
12) Waveguide Cutoff Frequency (lowest byte)

SM Returns: 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid setting
238 (EEh) Time-out Error

Notes:
1. Offset Length uses 1/1000,000 mm

Set OSL Cal Parameter – Control Byte #131 (83h)

Description: Set the type of connector being used

Bytes to Follow: 1 byte
Byte sent 00h Connector type: K Male.
Byte sent 01h Connector type: K Female.
Byte sent 02h Connector type: N Male.
Byte sent 03h Connector type: N Female
Byte sent 04h Connector type: User Defined

SM Returns: 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error: Invalid setting
238 (EEh) Time-out Error

Write Custom Waveguide - Control Byte #133 (85h)

Description: Write a waveguide parameter in the custom waveguide list.

Bytes to Follow: 25 bytes
1) Not Used
2) WG List index (0 - 24)
3 - 17) WG Description (in ASCII)
18) WG Cutoff Frequency (in KHz) (highest byte)
19) WG Cutoff Frequency
20) WG Cutoff Frequency
21) WG Cutoff Frequency (lowest byte)
22) WG Loss (highest byte)
23) WG Loss
24) WG Loss (lowest byte)

SM Returns: 255 (FFh) Operation Complete
224 (E0h) Parameter Error: Invalid Save Location.
238 (EEh) Time Out Error

Notes:
1. Loss uses units 1/100,000 dB/m or 1/100,000 dB/ft.

Recall Custom Waveguide - Control Byte #134 (86h)
Description: Query a waveguide in the custom waveguide list.
Bytes to Follow: 2 byte
1) Not Used
2) WG list index (0-24)
SM Returns: 24 bytes
1) Upper Bound of Custom WG Index
2 – 16) WG Description (in ASCII)
17) WG Cutoff Frequency (in KHz)(highest byte)
18) WG Cutoff Frequency
19) WG Cutoff Frequency
20) WG Cutoff Frequency (lowest byte)
21) WG Loss (highest byte)
22) WG Loss
23) WG Loss
24) WG Loss (lowest byte)

Notes:
1. Loss uses units 1/100,000 dB/m or 1/100,000 dB/ft.

Query User Connector_Coefficient - Control Byte #135 (87h)
Description: Query the user specified coefficients for the coax port connector.
Bytes to Follow: 0 bytes
SM Returns: 24 bytes
1) Port Connector Offset Open Length(highest byte)
2) Port Connector Offset Open Length
3) Port Connector Offset Open Length
4) Port Connector Offset Open Length(lowest byte)
5) Port Connector Offset Short Length(highest byte)
6) Port Connector Offset Short Length
7) Port Connector Offset Short Length
8) Port Connector Offset Short Length(lowest byte)
9) Port Connector Capacitive Coefficient c0(highest byte)
10) Port Connector Capacitive Coefficient c0
11) Port Connector Capacitive Coefficient c0
12) Port Connector Capacitive Coefficient c0 (lowest byte)
13) Port Connector Capacitive Coefficient c1(highest byte)
14) Port Connector Capacitive Coefficient c1
15) Port Connector Capacitive Coefficient c1
16) Port Connector Capacitive Coefficient c1 (lowest byte)
17) Port Connector Capacitive Coefficient c2 (highest byte)
18) Port Connector Capacitive Coefficient c2
19) Port Connector Capacitive Coefficient c2
20) Port Connector Capacitive Coefficient c2 (lowest byte)
21) Port Connector Capacitive Coefficient c3 (highest byte)
22) Port Connector Capacitive Coefficient c3
23) Port Connector Capacitive Coefficient c3
24) Port Connector Capacitive Coefficient c3 (lowest byte)

Notes:
1. Offset Length uses units 1/100,000 mm
2. \((\text{Value Desired} / \text{factor}) * 1000) + 1000000\)
 where
 \(\text{factor} = 10^{-15}\) for c0
 \(10^{-27}\) for c1
 \(10^{-36}\) for c2
 \(10^{-45}\) for c3

Set User Connector Coefficient - Control Byte #136 (88h)

Description: Set the user specified coefficients for the coax port connector.

Bytes to Follow: 24 byte
1) Port Connector Offset Open Length (highest byte)
2) Port Connector Offset Open Length
3) Port Connector Offset Open Length
4) Port Connector Offset Open Length (lowest byte)
5) Port Connector Offset Short Length (highest byte)
6) Port Connector Offset Short Length
7) Port Connector Offset Short Length
8) Port Connector Offset Short Length (lowest byte)
9) Port Connector Capacitive Coefficient c0 (highest byte)
10) Port Connector Capacitive Coefficient c0
11) Port Connector Capacitive Coefficient c0
12) Port Connector Capacitive Coefficient c0 (lowest byte)
13) Port Connector Capacitive Coefficient c1 (highest byte)
14) Port Connector Capacitive Coefficient c1
15) Port Connector Capacitive Coefficient c1
16) Port Connector Capacitive Coefficient c1 (lowest byte)
17) Port Connector Capacitive Coefficient c2 (highest byte)
18) Port Connector Capacitive Coefficient c2
19) Port Connector Capacitive Coefficient c2
20) Port Connector Capacitive Coefficient c2 (lowest byte)
21) Port Connector Capacitive Coefficient c3 (highest byte)
22) Port Connector Capacitive Coefficient c3
23) Port Connector Capacitive Coefficient c3
24) Port Connector Capacitive Coefficient c3 (lowest byte)

SM Returns: 255 (FFh) Operation Complete Byte
224 (E0h) Parameter Error
238 (EEh) Time-out Error
Notes:
1. Offset Length uses units 1/1000,000 mm
2. \[(\text{Value Desired} / \text{factor}) \times 1000 + 1000000\]
 where
 - factor = 10^{-15} for c0
 - 10^{-27} for c1
 - 10^{-36} for c2
 - 10^{-45} for c3

Set Baud Rate - Control Byte #197 (C5h)
Description: Sets the Baud Rate for serial communications.
Bytes to Follow: 1 byte
 1) Baud rate index:
 - 0 = 9600
 - 1 = 19200
 - 2 = 38400
 - 3 = 56000
 - 4 = 115200

SM Returns:
 - 255 (FFh) Operation Complete
 - 224 (E0h) Parameter Error: Invalid Baud Rate
 - 238 (EEh) Time Out Error

Set Language – Control Byte #198 (C6h)
Description: Set Default language mode
Bytes to Follow: 1 byte
 1) 00h = English
 - 01h = French
 - 02h = German
 - 03h = Spanish
 - 04h = Chinese
 - 05h = Japanese

SM Returns:
 - 255 (FFh) Operation Complete Byte
 - 224 (E0h) Parameter Error: Invalid Language
 - 238 (EEh) Time-out Error

Query Time - Control Byte #208 (D0h)
Description: Queries the Site Master for the current time in ASCII format.
SM Returns: 8 bytes HH:MM:SS
 1) Hour (higher byte)
 2) Hour (lower byte)
 3) :
 4) Minute (higher byte)
 5) Minute (lower byte)
 6) :
 7) Second (higher byte)
 8) Second (lower byte)
Read ASCII Serial Number - Control Byte #225 (E1h)

Description: Sets the SM into Keypad test mode.
Bytes to Follow: 1 byte
1) Serial number storage location (1=main serial, 2=secondary)
SM Returns: 8 bytes
1-8) Serial Number, in ASCII

Exit remote mode - Control Byte #255 (FFh)

Description: Site Master exits remote mode
Bytes to Follow: 0 byte
SM Returns: 1 byte
1) Confirm flag FFh

The computer sends a serial stop byte #255 (FFh) to the Site Master. Site Master returns a confirm flag (FFh). The Site Master resumes sweeping, either continuously or singly.

You may also press the “ESCAPE” key on the Site Master key pad to exit from remote mode (given that the serial communication is still in sync). In this case, the Site Master does not return a confirm byte to the serial port.

When exiting remote mode, system parameters changed during remote mode are used immediately.

If the user turns on the automatic save mechanism (control byte #64), the changes are automatically written to the runtime setup (setup 0).
Parameter Definitions

<table>
<thead>
<tr>
<th>Parameter</th>
<th># of bytes</th>
<th>Step</th>
<th>Example / Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>4 bytes</td>
<td>unsigned 1 KHz</td>
<td>5 Ghz = 5000000</td>
</tr>
<tr>
<td>Scale (RL, CL)</td>
<td>2 bytes</td>
<td>1 / 1000 dB</td>
<td>51.3 dB = 51300</td>
</tr>
<tr>
<td>(SWR)</td>
<td>2 bytes</td>
<td>1 / 1000 (ratio)</td>
<td>65.53 = 66530</td>
</tr>
<tr>
<td>Limit (RL, CL)</td>
<td>2 bytes</td>
<td>1 / 1000 dB</td>
<td>51.3 dB = 51300</td>
</tr>
<tr>
<td>(SWR)</td>
<td>2 bytes</td>
<td>1 / 1000 (ratio)</td>
<td>65.53 = 66530</td>
</tr>
<tr>
<td>(G/IL)</td>
<td>2 bytes</td>
<td>1 / 100 dB</td>
<td>100 dB = 0 120 dB = 22000</td>
</tr>
<tr>
<td>Markers (frequency & distance marker)</td>
<td>2 bytes</td>
<td>1 sweep point</td>
<td>Marker Values are given in relative position of the graph. The lowest value is 0, the highest is 129 (130 data points total).</td>
</tr>
<tr>
<td>Distance</td>
<td>4 bytes</td>
<td>1/100,000 m/ft</td>
<td>12.34 m = 1234000</td>
</tr>
<tr>
<td>Relative Propagation Velocity</td>
<td>4 bytes</td>
<td>1 / 100,000</td>
<td>0.837 = 83700</td>
</tr>
<tr>
<td>Cable Loss</td>
<td>4 bytes</td>
<td>1 / 100,000 dB</td>
<td>–0.345 dB/m = 34500</td>
</tr>
<tr>
<td>Gamma</td>
<td>4 bytes</td>
<td>1 / 1000 (ratio)</td>
<td>Gamma value is the ratio of magnitude of reflected signal over the magnitude of incident signal.</td>
</tr>
<tr>
<td>Phase</td>
<td>4 bytes</td>
<td>1 / 10 degree</td>
<td>Phase value is the difference in phase between the incident and reflected signal.</td>
</tr>
<tr>
<td>Power: dBm/dBr</td>
<td>4 bytes</td>
<td>1 / 1000 dBm</td>
<td>51.3 dBm = 51300 10.4 dBr = 10400</td>
</tr>
<tr>
<td>Lock Fail Counter</td>
<td>2 bytes</td>
<td>1 error count</td>
<td>234 fails = 234</td>
</tr>
<tr>
<td>Integrator Fail Counter</td>
<td>2 bytes</td>
<td>1 error count</td>
<td>123 fails = 123</td>
</tr>
<tr>
<td>Waveguide Cutoff Frequency</td>
<td>4 bytes</td>
<td>1 KHz</td>
<td>5Ghz = 500000</td>
</tr>
<tr>
<td>Waveguide Loss</td>
<td>4 bytes</td>
<td>1 / 100,000 dB</td>
<td>–0.345 dB/m = 34500</td>
</tr>
<tr>
<td>Port Connector Offset Open length</td>
<td>4 bytes</td>
<td>1/1000,000 mm</td>
<td>12650 = .012650m</td>
</tr>
<tr>
<td>Capacitive Coefficients</td>
<td>4 bytes</td>
<td></td>
<td>((Value Desired / factor) * 1000) + 1000000 where factor = 10^-15 for c0 10^-27 for c1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^-36 for c2 10^-45 for c3</td>
</tr>
</tbody>
</table>