Measurement Guide

Power Meter

for Anritsu RF and Microwave Handheld Instruments

BTS Master™
Site Master™
Spectrum Master™
Cell Master™

Power Meter
High Accuracy Power Meter
Inline Peak Power Sensor

Option 29
Option 19
MA24105A
TRADEMARK ACKNOWLEDGMENTS

Windows and Windows XP are registered trademarks of Microsoft Corporation.
BTS Master, Site Master, Cell Master, and Spectrum Master are trademarks of Anritsu Company.

NOTICE

Anritsu Company has prepared this manual for use by Anritsu Company personnel and customers as a guide for the proper installation, operation and maintenance of Anritsu Company equipment and computer programs. The drawings, specifications, and information contained herein are the property of Anritsu Company, and any unauthorized use or disclosure of these drawings, specifications, and information is prohibited; they shall not be reproduced, copied, or used in whole or in part as the basis for manufacture or sale of the equipment or software programs without the prior written consent of Anritsu Company.

UPDATES

Updates, if any, can be downloaded from the Documents area of the Anritsu web site at:
http://www.us.anritsu.com
Safety Symbols

To prevent the risk of personal injury or loss related to equipment malfunction, Anritsu Company uses the following symbols to indicate safety-related information. For your own safety, please read the information carefully before operating the equipment.

Symbols Used in Manuals

Danger

This indicates a very dangerous procedure that could result in serious injury or death, or loss related to equipment malfunction, if not performed properly.

Warning

This indicates a hazardous procedure that could result in light-to-severe injury or loss related to equipment malfunction, if proper precautions are not taken.

Caution

This indicates a hazardous procedure that could result in loss related to equipment malfunction if proper precautions are not taken.

Safety Symbols Used on Equipment and in Manuals

The following safety symbols are used inside or on the equipment near operation locations to provide information about safety items and operation precautions. Ensure that you clearly understand the meanings of the symbols and take the necessary precautions before operating the equipment. Some or all of the following five symbols may or may not be used on all Anritsu equipment. In addition, there may be other labels attached to products that are not shown in the diagrams in this manual.

- This indicates a prohibited operation. The prohibited operation is indicated symbolically in or near the barred circle.
- This indicates a compulsory safety precaution. The required operation is indicated symbolically in or near the circle.
- This indicates a warning or caution. The contents are indicated symbolically in or near the triangle.
- This indicates a note. The contents are described in the box.
- These indicate that the marked part should be recycled.
For Safety

Warning
Always refer to the operation manual when working near locations at which the alert mark, shown on the left, is attached. If the operation, etc., is performed without heeding the advice in the operation manual, there is a risk of personal injury. In addition, the equipment performance may be reduced. Moreover, this alert mark is sometimes used with other marks and descriptions indicating other dangers.

Warning
When supplying power to this equipment, connect the accessory 3-pin power cord to a 3-pin grounded power outlet. If a grounded 3-pin outlet is not available, use a conversion adapter and ground the green wire, or connect the frame ground on the rear panel of the equipment to ground. If power is supplied without grounding the equipment, there is a risk of receiving a severe or fatal electric shock.

Caution
Electrostatic Discharge (ESD) can damage the highly sensitive circuits in the instrument. ESD is most likely to occur as test devices are being connected to, or disconnected from, the instrument's front and rear panel ports and connectors. You can protect the instrument and test devices by wearing a static-discharge wristband. Alternatively, you can ground yourself to discharge any static charge by touching the outer chassis of the grounded instrument before touching the instrument's front and rear panel ports and connectors. Avoid touching the test port center conductors unless you are properly grounded and have eliminated the possibility of static discharge.

Repair of damage that is found to be caused by electrostatic discharge is not covered under warranty.
Table of Contents

Chapter 1—General Information
1-1 Introduction ... 1-1
1-2 Contacting Anritsu ... 1-1
1-3 Power Meter ... 1-1
1-4 High Accuracy Power Meter .. 1-1

Chapter 2—Power Meter
2-1 Introduction ... 2-1
2-2 General Measurement Setup .. 2-2
 Setting Frequency Span ... 2-2
 Setting the Amplitude .. 2-2
 Changing the Display Units ... 2-2
 Displaying Relative Power ... 2-3
 Setting Pass Fail Limits .. 2-3
2-3 Power Meter Menus ... 2-6
2-4 Freq (Frequency) Menu .. 2-7
2-5 Frequency Menu with Offset Function 2-8
 Freq 2/2 Menu .. 2-9
 Span Menu ... 2-11
2-6 Amplitude Menu offset: ... 2-12
 Units Menu ... 2-13
2-7 Average Menu ... 2-14
2-8 Limit Menu ... 2-14
2-9 Sweep Menu .. 2-14
2-10 Measure Menu .. 2-15
2-11 Trace Menu ... 2-15
2-12 Other Menus .. 2-15

Chapter 3—High Accuracy Power Meter
3-1 Introduction ... 3-1
3-2 Required Equipment ... 3-2
Table of Contents (Continued)

3-3 General Measurement Setup ... 3-2
 Changing the Display Units ... 3-2
 Zero and Cal ... 3-2
 Changing the Scale of the Analog Display 3-3
 Using Attenuators .. 3-4
 Displaying Relative Power ... 3-4
 Averaging/Max Hold/Run Hold .. 3-4
 Limits ... 3-5

3-4 High Accuracy Power Meter Menus 3-6

3-5 Amplitude Menu .. 3-7

3-6 Average Menu .. 3-8

3-7 Zero/Cal Menu .. 3-8

3-8 Limit Menu .. 3-9

3-9 Sweep Menu ... 3-9

3-10 Measure Menu .. 3-9

3-11 Trace Menu ... 3-9

3-12 Other Menus .. 3-9

Chapter 4—Inline Peak Power Sensor MA24105A

4-1 Introduction .. 4-1

4-2 Required Equipment .. 4-1

4-3 Sensor Power Meter Interface ... 4-5
 Main Menu Keys .. 4-5

4-4 Connection Setup .. 4-7

4-5 General Measurement Setup ... 4-8
 Changing the Display Units ... 4-8
 Zero and Calibrate ... 4-8
 Changing the Scale of the Analog Display 4-8
 Using Attenuators .. 4-8
 Selecting Measurements ... 4-9

4-6 Menus ... 4-9

4-7 MA24105A Menu Group ... 4-10

4-8 Display Menu .. 4-11

4-9 Forward Menu ... 4-12

4-10 Reverse Menu .. 4-14

4-11 Summary Menu .. 4-14

4-12 Amplitude Menu .. 4-15
 External Amplitude Units Menu 4-15
4-13 Units Menu .. 4-16
4-14 Averages Menu ... 4-16
4-15 Zero/Cal Menu .. 4-17
4-16 Cal Factor Menu .. 4-17
4-17 Limits Menu .. 4-18
4-18 Video BW Menu ... 4-19
4-19 Additional Menus ... 4-20
 Instrument Mode Selector 4-20
 System Menu .. 4-20
 File Menu .. 4-20
 Limits Menu (Instrument) 4-20
 Trace Menu ... 4-20
 Measure Menu ... 4-20
 Sweep Menu .. 4-20
 Calibrate Menu .. 4-20
 Preset Menu ... 4-21

Appendix A—Error Messages
A-1 Introduction .. A-1
A-2 High Accuracy Power Meter Messages A-1

Appendix B—Option 19 Power Sensors
B-1 Introduction ... B-1

Index
Chapter 1 — General Information

1-1 Introduction

This Measurement Guide documents the Power Meter and the High Accuracy Power Meter for the following Anritsu instruments:

- BTS Master
- Site Master
- Spectrum Master
- Cell Master
- LMR Master

Note: Not all instrument models offer every option. Please refer to the Technical Data Sheet of your instrument for available options.

1-2 Contacting Anritsu

To contact Anritsu, please visit:

http://www.anritsu.com/contact.asp

From here, you can select the latest sales, select service and support contact information in your country or region, provide online feedback, complete a “Talk to Anritsu” form to have your questions answered, or obtain other services offered by Anritsu.

Updated product information can be found on the Anritsu web site:

http://www.anritsu.com/

Search for the product model number. The latest documentation is on the product page under the Library tab.

1-3 Power Meter

Instruments equipped with the Power Meter measurement mode can be used to make channelized power meter measurements. No external sensor is required.

1-4 High Accuracy Power Meter

Instruments with Option 19 and an appropriate sensor can be used to make High Accuracy Power Measurements. This option provides true RMS measurements with accurate measurements for both CW and complex digitally modulated signals. Appendix B lists the Option 19 compatible Anritsu sensors.

Note: Sensors are not included with Option 19. They must be purchased separately.
Chapter 2 — Power Meter

2-1 Introduction

This chapter describes the instrument setup for general power meter measurements.

The Power Meter can display measured power in dBm, dBV, dBmV, dBµV, Volts, or Watts. No external sensor is required. The Power Meter frequency span can be set from 1 kHz to 100 MHz. The Full Band submenu key conveniently sets the frequency range to 100 MHz on the current center frequency in order to simulate a broadband measurement.

The maximum and minimum values of the analog display can be set in the Amplitude menu. The scale of the analog display reflects the Unit selection. Relative Power is a useful feature to obtain the power reading with respect to a specific power level.
2-2 General Measurement Setup

Please refer to the User Guide for your instrument for directions about selecting the Power Meter mode and file management.

Setting Frequency Span

Press the **Freq** main menu key to set the desired frequency. Choose whether to set frequency parameters manually or to select a signal standard.

Select Manually

Choose the appropriate submenu keys and enter the start and stop frequency, the center frequency, and the span.

Select a Signal Standard

Press the **Signal Standard** submenu key and select the channel (and Uplink or Downlink) or select the full band.

Select a Frequency Offset

A user defined frequency offset feature can be enabled on supported Anritsu models to offset the frequency displayed on the instrument from the actual swept frequency range. When enabled, the **Center Freq**, **Start Freq**, and **Stop Freq** keys will indicate that a frequency offset has been set (Figure 2-7 on page 2-10). To create a frequency offset, press the **Step Size & Offset** submenu key and select **Freq Offset**.

Setting the Amplitude

1. Press the **Amplitude** main menu key.
2. Press the **Max** submenu key and set the upper scale value. Press the **Min** submenu key and set the lower scale value.

o or

 Press the **Auto Scale** submenu key to adjust the range automatically.

Changing the Display Units

The power reading can be displayed in dBm, dBV, dBmV, dBμV, Volt, or Watt. Use the following procedure to change the displayed units:

1. Press the **Amplitude** main menu key.
2. Press the **Units** submenu key and select the display units.
3. Press the **Back** submenu key to return to the **Amplitude** menu.
Displaying Relative Power

Use the following procedure to select Relative Power through the Amplitude menu.

1. With the desired base power (reference) level connected to the input of your instrument, press the **Amplitude** main menu key.
2. Press the **Relative** submenu key.

| Note | Relative power is displayed in dB. |

| Note | Screen captured images (Figure 2-1 and Figure 2-2) are provided as examples. The image and measurement details shown on your instrument may differ from the examples in this measurement guide. |

Setting Pass Fail Limits

Maximum and minimum limits can be set as follows:

1. On your instrument, press the **Limit** main menu key, or press the **Shift** key, then the **Limit** (6) key.
2. Press the **Upper Limit** submenu key and use the directional arrow keys, the key pad, or the rotary knob to set the desired upper limit. Then press **Enter**.
3. Press the **Lower Limit** submenu key and use the directional arrow keys, the key pad, or the rotary knob to set the desired lower limit. Then press **Enter**.
4. Set the **Limit** submenu key to **On** to activate the Limit features.
If the measured power is between the limits, then the measurement is displayed in green.

Figure 2-1. Power Meter Display, Passed
If the measured power is not between the limits, then the measurement is displayed in red.

Figure 2-2. Power Meter Display, Failed
Figure 2-3 shows the map of the Power Meter menus. The following sections describe main menus and associated submenus. Menu maps show all possible submenu keys. Refer to individual menu descriptions for display circumstances.
2-4 Freq (Frequency) Menu

Key Sequence: Frequency

| Note | Refer to “Frequency Menu with Offset Function” on page 2-8 if your instrument firmware supports frequency offset (bottom submenu is Step Size & Offset). |

<table>
<thead>
<tr>
<th></th>
<th>2-4 Freq (Frequency) Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Freq:</td>
<td>Sets the frequency at the center of the measurement. Frequencies can be entered in units of GHz, MHz, kHz, or Hz. Enter the frequency by using the keypad, the rotary knob, or the arrow keys. When the center frequency is entered, the labeling below the analog display shows the center frequency and the span in the most appropriate units based upon the value.</td>
</tr>
<tr>
<td>Start Freq:</td>
<td>Enter a start frequency by using the keypad, the rotary knob, or the arrow keys. If the entered start frequency is greater than the current stop frequency, then the stop frequency is automatically adjusted to be 1 kHz greater than the start frequency (Min Span).</td>
</tr>
<tr>
<td>Stop Freq:</td>
<td>Enter a stop frequency by using the keypad, the rotary knob, or the arrow keys. If the entered stop frequency is lower than the current start frequency, then the start frequency is automatically adjusted to be 1 kHz less than the stop frequency (Min Span).</td>
</tr>
<tr>
<td>Span:</td>
<td>Opens the “Span Menu” on page 2-11.</td>
</tr>
<tr>
<td>Freq Step:</td>
<td>Sets the interval that is used by the arrow keys. Enter the step amount by using the keypad, the rotary knob, or the arrow keys.</td>
</tr>
<tr>
<td>Signal Standard:</td>
<td>Opens the signal standard menu, showing the currently selected signal standard and a complete list of signal standards to choose from.</td>
</tr>
<tr>
<td>Channel:</td>
<td>Sets the channel information for the selected standard. If the particular standard has not been used before, then the channel number defaults to the lowest legal channel number for that standard. If that standard has been used before, then the last used channel will be the default.</td>
</tr>
<tr>
<td>Full Band:</td>
<td>Sets the frequency of the unit to a 100 MHz span on the current center frequency.</td>
</tr>
</tbody>
</table>

Figure 2-4. Power Meter Freq Menu
2-5 Frequency Menu with Offset Function

Key Sequence: Frequency

A user defined frequency offset can be entered to adjust the frequency displayed on the instrument from the actual swept frequency. When enabled Offset will be displayed at the bottom of the screen (Figure 2-7) and the Center Freq, Start Freq, and Stop Freq keys will indicate that a frequency offset has been turned on.

Set the Freq Offset to 0 Hz to remove the frequency offset.

Note

The Freq Offset will affect the displayed values of Frequencies and Limits. The currently frequency offset value is displayed in the “Freq 2/2 Menu”.

<table>
<thead>
<tr>
<th>Freq 1/2</th>
<th>Offset Center Freq</th>
<th>1.951 250 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset Start Freq</td>
<td>1.950 611 500 GHz</td>
<td></td>
</tr>
<tr>
<td>Offset Stop Freq</td>
<td>1.951 666 500 GHz</td>
<td></td>
</tr>
</tbody>
</table>

Offset Center Freq: Sets the frequency at the center of the measurement. Frequencies can be entered in units of GHz, MHz, kHz, or Hz. Enter the frequency by using the keypad, the rotary knob, or the arrow keys. When the center frequency is entered, the labeling below the analog display shows the center frequency and the span in the most appropriate units based upon the value.

Offset Start Freq: Enter a start frequency by using the keypad, the rotary knob, or the arrow keys. If the entered start frequency is greater than the current stop frequency, then the stop frequency is automatically adjusted to be 1 kHz greater than the start frequency (Min Span).

Offset Stop Freq: Enter a stop frequency by using the keypad, the rotary knob, or the arrow keys. If the entered stop frequency is lower than the current start frequency, then the start frequency is automatically adjusted to be 1 kHz less than the stop frequency (Min Span).

Span: Opens the “Span Menu” on page 2-11.

Signal Standard: Opens the signal standard menu, showing the currently selected signal standard and a complete list of signal standards to choose from.

Channel #: Sets the channel information for the selected standard. If the particular standard has not been used before, then the channel number defaults to the lowest legal channel number for that standard. If that standard has been used before, then the last used channel will be the default.

Full Band: Sets the frequency of the unit to a 100 MHz span on the current center frequency.

Step Size & Offset: Opens the “Freq 2/2 Menu” on page 2-9.
Freq 2/2 Menu

Key Sequence: **Freq > Step Size & Offset**

<table>
<thead>
<tr>
<th>Freq 2/2</th>
<th>Freq Step: Sets the interval that is used by the arrow keys. Enter the step amount by using the keypad, the rotary knob, or the arrow keys.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freq Offset: Enter the desired offset (positive or negative) using the keypad, the arrow keys, or the rotary knob. If entering a frequency using the keypad, the submenu key labels change to GHz, MHz, kHz, and Hz. Press the appropriate units key. Pressing the Enter key has the same affect as the MHz submenu key.</td>
</tr>
<tr>
<td></td>
<td>Offset Step Size: Enter the desired frequency offset step size. The offset frequency step specifies the amount by which the offset frequency will change when the Up/Down arrow keys are pressed.</td>
</tr>
<tr>
<td></td>
<td>Use the keypad or the rotary knob to change the Offset Step Size.</td>
</tr>
<tr>
<td></td>
<td>Back: Returns to the “Frequency Menu with Offset Function” on page 2-8.</td>
</tr>
</tbody>
</table>

Figure 2-6. Power Meter Freq 2/2 with Offset Function Menu
Example of Frequency Offset Using the Same Source Signal

No Offset

+200 MHz Frequency Offset
(Freq > Step Size & Offset > Freq Offset)

Figure 2-7. 200 MHz Frequency Offset Example
Span Menu

Key Sequence: Frequency > Span

Span: Sets the width of the measurement window in GHz, MHz, kHz, or Hz. The center frequency and span are displayed in the message area at the bottom of the status window. The span can be entered with the keypad and then selecting a units (GHz, MHz, kHz, or Hz) submenu key, or by using the arrow keys to change an already selected frequency. Press Enter to set the span, or press Esc to restore the previous span setting.

Span Up
1 – 2 – 5: Increases the span to the next multiple of 1, 2, or 5.

Span Down
1 – 2 – 5: Decreases the span to the next multiple of 1, 2, or 5.

Full Span: Sets the span to 100 MHz on the current center frequency. Adjusts the center frequency if it is at the edge of the limit of the instrument.

Min Span: Changes the span to 1 kHz.

Last Span: Returns the span to the previous value.

Back: Returns to the “Freq (Frequency) Menu” on page 2-7.
2-6 Amplitude Menu offset:

Key Sequence: Amplitude

Max: Sets the maximum value on the display.

Min: Sets the minimum value on the display.

Offset: Used to set the division offset. When active, each division value is increased or decreased by the offset entered. A value up to ±100 dB can be entered.

Relative

On Off: Press this submenu key to toggle relative power On or Off. This measurement shows the relative level of the desired base power level input to your instrument. When ON, the message Relative: On nnn dB (where nnn dB is the current relative value) shows in the message area. The units will be automatically reverted to dBm if necessary.

Units: Opens the "Units Menu" on page 2-13. Note that changing the units sets Relative to Off.

Autoscale: Adjusts the Top and Bottom values so that the power meter needle will be shown in the middle of the analog display.

Figure 2-9. Power Meter Amplitude Menu
Units Menu

Key Sequence: **Amplitude** > **Units**

- **Units:** Select a unit of measure for the power meter. dBm, dBV, dBmV, dBµV, Volt, or Watt. The selected unit is indicated by the red circle.

- **Back:** Returns to the “Amplitude Menu offset:” on page 2-12.

Figure 2-10. Power Meter Units Menu
2-7 Average Menu

Key Sequence: Average

<table>
<thead>
<tr>
<th>Average</th>
<th>Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>Med</td>
</tr>
</tbody>
</table>

Acquisition: Sets the measurement speed:
- Fast, processes the power value quickly but with some inaccuracy.
- Slow, processes the power value with the most accuracy.
- Med, process the power value with greater accuracy than the Fast setting and the process time is faster than the Slow setting.

Press the submenu key to toggle through the choices. The selected speed is underlined.

Running Averages: Sets the number of traces used in calculating the average. Enter the desired number by using the keypad, the rotary knob, or the arrow keys. Press Enter to set, or press Esc to restore the previous setting.

![Figure 2-11. Power Meter Average Menu](image)

2-8 Limit Menu

Key Sequence: Limit

<table>
<thead>
<tr>
<th>Limit</th>
<th>Upper Limit</th>
<th>Lower Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>-5 dBV</td>
<td>-21 dBV</td>
</tr>
<tr>
<td>Off</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limit: Turns the limits On or Off.

Upper Limit: Sets the upper limit. Enter the desired number by using the keypad, the rotary knob, or the arrow keys. If the keypad was used to enter new values, press the Esc button to restore the previous setting, or press Enter to set the new setting.

Lower Limit: Sets the lower limit. Enter the desired number by using the keypad, the rotary knob, or the arrow keys. If the keypad was used to enter new values, press the Esc button to restore the previous setting, or press Enter to set the new setting.

![Figure 2-12. Power Meter Limit Menu](image)

2-9 Sweep Menu

Key Sequence: Shift > Sweep (3) key

<table>
<thead>
<tr>
<th>Units</th>
<th>Sweep Single/Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>dBm</td>
<td>This submenu key toggles between continuous sweep and single sweep. In single sweep mode, the results of a sweep are displayed on the screen while the instrument awaits a trigger event to start a new sweep.</td>
</tr>
</tbody>
</table>

![Figure 2-13. Power Meter Sweep Menu](image)
2-10 Measure Menu
This menu is not available in Power Meter measurement mode.

2-11 Trace Menu
This menu is not available in Power Meter measurement mode.

2-12 Other Menus
Preset, File, Mode and System are described in the User Guide.
Chapter 3 — High Accuracy Power Meter

3-1 Introduction

When the High Accuracy Power Meter (Option 19) is installed in your instrument, an Anritsu sensor can be used to make high accuracy power measurements. This high performance option provides true RMS measurements and accurate measurements for both CW and complex digitally modulated signals. Appendix B lists the Option 19 compatible Anritsu sensors.

| Note | The Anritsu sensor is not included with Option 19. A high accuracy power sensor must be purchased separately. |

Power values are displayed in both dBm and Watts. The Relative Power feature allows the display of power changes with respect to a desired reference value in both dB and % (percent). Limit values can be turned on as needed to indicate if a measurement is within or outside specified limits. Running Averages and a Max/Hold feature are also available.

The High Accuracy Power Sensor attaches to your instrument with the supplied cable. The zeroing feature improves accuracy by removing measured system noise. Refer to Table 3-1 for the power range in which accuracy is improved. Calibration factors can be used to correct both efficiency and mismatch loss.

Table 3-1. Power Range for Improving Accuracy via Zeroing to Remove Noise

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Power Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSN50</td>
<td>–20 dBm to –30 dBm</td>
</tr>
<tr>
<td>MA24106A, MA24108A, MA24118A, MA24126A</td>
<td>–30 dBm to –40 dBm</td>
</tr>
<tr>
<td>MA24104A, MA24105A</td>
<td>+3 dBm to +13 dBm</td>
</tr>
</tbody>
</table>

Additional attenuators can be used to ensure that the power does not exceed the specified measurement range. The Enter Offset feature allows entering offset values for any cables and attenuators.
3-2 Required Equipment

- One or more of the following USB Power Sensors
 - PSN50
 - MA24104A
 - MA24105A
 - MA24106A
 - MA24108A
 - MA24118A
 - MA24126A

3-3 General Measurement Setup

This measurement example uses an Anritsu PSN50 sensor and an attenuator for the high power measurement.

1. Connect the USB A/mini-B cable between the sensor and your instrument.
2. Press the On/Off key to turn on your instrument.
3. Press the Shift key, then the Mode (9) key. Use the Up/Down arrow keys or rotary knob to select High Accuracy Power Meter mode and press Enter.

Changing the Display Units

The power reading can be displayed in dBm or Watts. Use the following procedure to change the displayed units:

1. Press the Amplitude main menu key.
2. Press the Units submenu key and select the display units.
3. Press the Back submenu key to return to the Power Meter menu.

Zero and Cal

1. Press the Zero/Cal main menu key and press the Cal Factor submenu key. Enter the Center Frequency, or press the Signal Standard key and the Up/Down arrow keys to select a particular standard. The calibration factors are derived for the corresponding center frequency. The channel number is not required because the calibration factor frequencies are rounded to the nearest 500 MHz. The Cal Factor message in the display window shows Cal Factor ON if the Cal Factor command has been properly sent to the sensor.

2. With no power applied to the sensor, press the Zero submenu key to zero the sensor. This step is recommended when making power measurements below –20 dBm.
Changing the Scale of the Analog Display

1. Press the Amplitude main menu key.
2. Press the Auto Scale submenu key to align the power meter needle in the middle of the analog display. The maximum and minimum values align accordingly.
3. Press the Max submenu key and use the arrow keys, rotary knob, or numeric key pad to manually set the maximum value of the analog display.
4. Press the Min submenu key and use the arrow keys, rotary knob, or numeric key pad to manually set the minimum value of the analog display.

Note
With no offset, the maximum value for the display is the upper measurement range, which is +20 dBm. With an offset, such as with 10 dB of attenuation, the upper value can be set to +30 dBm. With an offset of xx dB, the upper value can be set to +20 dBm plus xx dB.
3-3 General Measurement Setup

Using Attenuators

1. Press the **Amplitude** main menu key, and press the **Enter Offset** submenu key.
2. Enter the offset value for the attenuator at the frequency of operation.

Displaying Relative Power

1. Press the **Amplitude** main menu key.
2. With the desired base power level being available at the sensor, press the **Relative** submenu key. The power reading shows 0 dB and 100%. If you are measuring a 10 dBm signal, and if the Relative key is pressed, then a drop to 7 dBm will show as –3 dB and 50%.

Averaging/Max Hold/Run Hold

1. Press the **Average** main menu key.
2. Press the Running Averages submenu key. Use the arrow keys, rotary knob, or numeric keypad to enter the desired number of averages.
3. Press the Max Hold submenu key to toggle between Max Hold On and Max Hold Off. If averaging is selected, then Max Hold displays the maximum value of the non-averaged data.

![Averages Menu on the High Accuracy Power Meter](image)

Figure 3-2. Averages Menu on the High Accuracy Power Meter
Limits

1. Press the Limit main menu key.
2. Press the Lower Limit submenu key. Enter the lower limit value in dBm or in Watts.
3. Press the Upper Limit submenu key. Enter the upper limit value in dBm or in Watts.
4. Press the Limit On/Off submenu key to turn the limits On and Off. The number display turns green (if the measurement is passing) or red (if the measurement is failing).
5. Press the Amplitude main menu key, and press the Units submenu key to change between dBm and Watts.

Note: Screen images are provided as examples. The images and measurement details that are shown on your instrument may differ from the examples in this measurement guide.

Figure 3-3. Limits Menu on the High Accuracy Power Meter
3-4 High Accuracy Power Meter Menus

Figure 3-4 shows the map of the High Accuracy Power Meter menus. The following sections describe main menus and associated submenus. Menu maps show all possible submenu keys. Refer to individual menu descriptions for display circumstances.

Figure 3-4. High Accuracy Power Meter Menus
3-5 Amplitude Menu

Key Sequence: Amplitude

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>Sets the maximum value on the display.</td>
</tr>
<tr>
<td>Min</td>
<td>Sets the minimum value on the display.</td>
</tr>
<tr>
<td>Enter Offset</td>
<td>Turns Offset On or Off. When on, a value of ±100 dB can be entered.</td>
</tr>
<tr>
<td>Relative</td>
<td>Press this submenu key to toggle relative power On or Off. This measurement shows the relative level of the desired base power level input to your instrument. When ON, the message Relative: On nnn dB (where nnn dB is the current relative value) shows in the message area. The units will be automatically reverted to dBm if necessary.</td>
</tr>
<tr>
<td>Units</td>
<td>Opens the Units menu.</td>
</tr>
<tr>
<td>dBm or Watt</td>
<td>Select a unit of measure for the power meter. The selected unit is indicated by the red circle.</td>
</tr>
<tr>
<td>Back</td>
<td>Returns to the Amplitude Menu.</td>
</tr>
<tr>
<td>Autoscale</td>
<td>Adjusts the Top and Bottom values so that the power meter needle will be shown in the middle of the analog display.</td>
</tr>
</tbody>
</table>

![Diagram of Amplitude Menu](image)

Figure 3-5. High Accuracy Power Meter Amplitude Menu
3-6 Average Menu

Key Sequence: Average

| Running Averages: Sets the number of measurements to be averaged. |
| Max Hold: Sets the displayed measurement to show the maximum measured power when On. Note that changing any parameter resets this feature. |

Max Hold
On Off

Running Averages
1

Figure 3-6. High Accuracy Power Meter Average Menu

3-7 Zero/Cal Menu

Key Sequence: Zero/Cal

Zero: With no power applied to the sensor and pressed On, the sensor is set to zero. This is recommended when making power measurements below –20 dBm.

Cal Factor: Press this submenu key to open the Cal Factor menu. Set the desired frequency by setting the center frequency or using a signal standard.

Center Freq: Press this submenu key, then use the number keypad, arrow keys, or rotary knob to set the frequency.

Signal Standard: Press this submenu key to open a list box and select a signal standard.

Back: Press this submenu key to return to the Zero/Cal menu.

Figure 3-7. High Accuracy Power Meter Zero/Cal Menu
3-8 Limit Menu

Key Sequence: **Limit**

<table>
<thead>
<tr>
<th>Limit</th>
<th>Upper Limit: Sets the upper limit. Enter the desired number by using the keypad, the rotary knob, or the arrow keys. If the keypad was used to enter new values, press the Esc button to restore the previous setting, or press Enter to set the new setting.</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Lower Limit: Sets the lower limit. Enter the desired number by using the keypad, the rotary knob, or the arrow keys. If the keypad was used to enter new values, press the Esc button to restore the previous setting, or press Enter to set the new setting.</td>
</tr>
<tr>
<td>Off</td>
<td>-5 dBV</td>
</tr>
<tr>
<td></td>
<td>-21 dBV</td>
</tr>
</tbody>
</table>

Figure 3-8. High Accuracy Power Meter Limit Menu

3-9 Sweep Menu

This menu is not available in High Accuracy Power Meter measurement mode.

3-10 Measure Menu

This menu is not available in High Accuracy Power Meter measurement mode.

3-11 Trace Menu

This menu is not available in High Accuracy Power Meter measurement mode.

3-12 Other Menus

Preset, File, Mode and **System** are described in the User Guide.
Chapter 4 — Inline Peak Power Sensor MA24105A

4-1 Introduction

This chapter describes the setup and use of the model MA24105A Inline Peak Power Sensor for high accuracy power meter measurements.

The MA24105A is an in-line type of power sensor module that can acquire forward and reverse measurements when connected to an Anritsu Handheld instrument with High Accuracy Power Meter (Option 19) installed. Forward measurements include Average Power, Crest Factor, Peak Envelope Power (PEP), Burst Average Power, and CCDF. Reverse measurements include Average Power, Reflection Coefficient, Return Loss, and VSWR. The frequency range is 350 MHz to 4000 MHz, and the power range is from 2 mW to 300 W, depending upon measurement function.

In the analog meter view, as shown in Figure 4-5, forward measurements are displayed in the dial portion of the meter. The reverse measurement is displayed below the dial in a rectangular box. To view all of the forward and reverse measurements in table format, use the Summary display (as shown in Figure 4-6). Figures showing measurement screens may differ from any actual screen on your instrument.

4-2 Required Equipment

In order to use the MA24105A Inline Peak Power Sensor, your Anritsu handheld instrument must have all of the following:

- The High Accuracy Power Meter (Option 19) installed
- Up-to-date firmware
- A USB Interface
- A USB cable assembly (supplied with the MA24105A), Type USB-A / MICRO-B Latch, 1.8 m, Anritsu part number 2000-1606-R
Figure 4-1. MA24105A Inline Peak Power Sensor – Front
Figure 4-2. MA24105A USB Connector and Indicator Light

Figure 4-3. MA24105A RF Input, Type N(f)
Figure 4-4. MA24105A Inline Peak Power Sensor – Back
4-3 Sensor Power Meter Interface

Sensor and High Accuracy Power Meter Interface

Firmware in both the MA24105A Inline Peak Power Sensor and in Option 19 interact to provide additional functions in the connected Anritsu handheld instrument. The firmware for the High Accuracy Power Meter (Option 19) and the firmware of your instrument must be up-to-date versions. Refer to Section 4-2 “Required Equipment” on page 4-1.

Main Menu Keys

When the MA24105A is connected to your Anritsu handheld instrument with Option 19 installed, the following five main menu keys are displayed at the bottom of the measurement display:

Display Amplitude Average Zero/Cal Limit

These main menu keys and the Display menu with its submenu keys are shown in Figure 4-5. The screen that is displayed in Figure 4-5 is an example and may not match any actual screen on your instrument.

![Figure 4-5. Forward and Reverse Average Power](image)
Figure 4-6. Power Meter Summary Display
4-4 Connection Setup

Connect the MA24105A to the Anritsu handheld instrument with Option 19.

1. Connect the USB cable between the sensor and your instrument. The MA24105A green power light is illuminated when power is available via the USB cable (refer to Figure 4-2 on page 4-3).

2. Press the On/Off key to turn on your instrument.

3. If the instrument is already On when the sensor USB cable is connected, an Attention message is displayed. Refer to Figure 4-7.

Figure 4-7. USB Connection Message

4. When the Attention message box is no longer displayed, the connection is enabled.
4-5 General Measurement Setup

Please refer to the User Guide for your instrument for directions about selecting the High Accuracy Power Meter mode and about file management.

Changing the Display Units

The power reading can be displayed in dBm or Watts. Use the following procedure to change the displayed units:

1. Press the **Amplitude** main menu key.
2. Press the **Units** submenu key and select the display units (press either **dBm** or **Watt**).
3. Press the **Back** submenu key to return to the Amplitude menu.

Zero and Calibrate

1. Press the **Zero/Cal** main menu key and then press the **Cal Factor** submenu key. Enter the Center Frequency. The calibration factors are derived for the center frequency.

 Alternatively, press the **Signal Standard** submenu key and then the **Up/Down** arrow keys to select a particular standard and band. Because most standard bands are less than 500 MHz wide, and because calibration factor frequencies are rounded to the nearest 500 MHz, a specific channel number is not required. The calibration factors are derived for the corresponding signal standard frequency.

 The Cal Factor message in the Instrument Settings Summary of the display window shows **Cal Factor ON** if the Cal Factor command has been successfully sent to the sensor.

2. With no power applied to the sensor, press the **Zero** submenu key to zero the sensor. This step is recommended when making power measurements below +13 dBm.

Changing the Scale of the Analog Display

1. Press the **Amplitude** main menu key.
2. Press the **Auto Scale** submenu key to align the power meter needle in the middle of the analog display. The maximum and minimum values align accordingly.
3. Press the **Max** submenu key and use the arrow keys, rotary knob, or numeric keypad to manually set the maximum value of the analog display.
4. Press the **Min** submenu key and use the arrow keys, rotary knob, or numeric keypad to manually set the minimum value of the analog display.

Using Attenuators

1. Press the **Amplitude** main menu key, and then press the **Enter Offset** submenu key.
2. Enter an offset value from +100 dB to 0 to –100 dB (gain or loss) for the attenuator at the frequency of operation.
Selecting Measurements

1. Press the **Display** main menu key, and then press **Forward**, **Reverse**, or **Summary**. Refer to **Figure 4-5 on page 4-5**. **Summary** displays both forward and reverse measurements in table format, as shown in **Figure 4-6 on page 4-6**.

2. When selecting **Forward** or **Reverse**, refer to **Section 4-6 “Menus” on page 4-9** for additional information regarding the submenu measurement keys for Forward and Reverse measurements.

4-6 Menus

Figure 4-8 shows the menu group of High Accuracy Power Meter menus for the MA24105A Inline Peak Power Sensor. The sections that follow **Figure 4-8** describe main menus and associated submenus. The submenus are listed in the order that they appear on the display from top to bottom under each main menu.
4-7 MA24105A Menu Group

Menu maps show all possible submenu keys. Refer to individual menu descriptions for display circumstances.

Figure 4-8. MA24105A Menu Group for High Accuracy Power Meter
Display Menu

Key Sequence:
Display

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Forward: Press this submenu key to open the Forward menu, which lists the forward direction measurement parameters. Select the desired measurement parameter, then press the Back submenu key to return to the Display menu. Reverse: Press this submenu key to open the Reverse menu, which lists the reverse direction measurement parameters. Select the desired measurement parameter, then press the Back submenu key to return to the Display menu. Summary: Press this submenu key to display the Summary table, which includes both forward and reverse measurements. Each parameter value is displayed. Press the Back submenu key to return to the Display menu.</td>
</tr>
</tbody>
</table>

Figure 4-9. Display Menu
4-9 Forward Menu

Key Sequence: Display > Forward

Press the submenu key for the desired measurement parameter. Then press the Back submenu key.

Average: Press this submenu key to have the sensor measure the average power in the forward direction.

Crest Factor: Press this submenu key to have the sensor measure the Crest Factor in the forward direction. Crest Factor is a ratio of peak power to average power.

Burst Average Manual: Press this submenu key to have the sensor measure the average power within the signal bursts (in the forward direction). In manual, you must define the duty cycle of the bursts in order to complete the averaging calculation. Refer to the “Duty Cycle” submenu key in the “Limits Menu” on page 4-18.

Peak Envelope Power: Press this submenu key to have the sensor measure the peak power in the forward direction.

CCDF: Press this submenu key to have the sensor measure the value of the Complementary Cumulative Distribution Function (CCDF). A Cumulative Distribution Function (CDF) describes the probability that the signal power is less than or equal to a threshold value. The Complementary Cumulative Distribution Function (CCDF) describes the probability that the signal power is greater than a threshold value. For directions to set the threshold, refer to the “CCDF Threshold” submenu key in the “Limits Menu” on page 4-18.

Burst Average Auto: Press this submenu key to have the sensor measure the average power within the signal bursts (in the forward direction). In auto, the sensor determines the duty cycle of the bursts in order to complete the averaging calculation.

Modulation: Press this submenu key to select the modulation type for Peak Envelope Power (PEP) measurement only. First press the Peak Envelope Power submenu key (or check to ensure that the circle on its key face is red). Then press Modulation. The Select Modulation type list box is displayed. Use the arrow keys or the rotary knob to highlight the desired modulation type, and then press Enter to select. The selection of a specific modulation type provides a correction factor to refine the PEP calculation. Refer to Figure 4-11 on page 4-13.

Back: Press this submenu key to return to the Display menu.

Figure 4-10. Forward Menu
The Select Modulation Type list box contains modulation types that are used to apply a correction factor that refines the Peak Envelope Power (PEP) calculation. The list shown in Figure 4-11 is a sample and may not match the list that is displayed on your instrument.

![Select Modulation Type Table]

Figure 4-11. Example Modulation Types for Peak Envelope Power (PEP)
4-10 Reverse Menu

Key Sequence: Display > Reverse

| Reverse | Press the submenu key for the desired measurement parameter. Then press the Back submenu key.
| Average | **Average**: Press this submenu key to have the sensor measure the average power in the reverse direction.
| Refl.Coeff. | **Refl. Coeff.**: Press this submenu key to measure the reflection coefficient (reflected power / forward power).
| Return Loss | **Return Loss**: Press this submenu key to measure return loss.
| VSWR | **VSWR**: Press this submenu key to measure VSWR.
| Back | **Back**: Press this submenu key to return to the Display menu.

Figure 4-12. Reverse Menu

4-11 Summary Menu

Key Sequence: Display > Summary

| Summary | Pressing the Summary submenu key displays a table of all of the forward and reverse measurements. Refer to Figure 4-6 on page 4-6.
| Back | **Back**: To return to the Display menu, press the Back submenu key.

Figure 4-13. Summary Menu
4-12 Amplitude Menu

Key Sequence: Amplitude

Max: Press this submenu key to set the maximum value on the display.
Min: Press this submenu key to set the minimum value on the display.

Enter Offset: Press this submenu key and then use the numeric keypad to enter a value. A Units menu is displayed to allow you to select the value as Gain or Loss. Pressing Enter sets the value to Gain by default.

Forward Relative On Off: Press this submenu key to toggle relative forward power On or Off. This measurement displays the relative level of the desired base power level input to the instrument.

Reverse Relative On Off: Press this submenu key to toggle relative reverse power On or Off. This measurement displays the relative level of the desired base power level input to the instrument.

Units: Press this submenu key to display the Units menu, which allows a choice of dBm or Watt.

Auto Scale: Press this submenu key to adjust the top and bottom values so that the power meter needle is displayed near the middle of the analog scale.

Figure 4-14. Amplitude Menu

External Amplitude Units Menu

Key Sequence: Amplitude > Enter Offset > Number Entry

In the Amplitude menu, press the Enter Offset submenu key, and then enter a value from the numeric keypad. This Units menu is displayed.

dB External Gain: Press this submenu key to set the entered value as Gain.

dB External Loss: Press this submenu key to set the entered value as Loss. Pressing Enter rather than a submenu key selects Gain as the default.

Figure 4-15. Units Menu (External Amplitude)
4-13 Units Menu

Key Sequence: Amplitude > Units

- **dBm:** Press this submenu key to select dBm as the units of displayed power.
- **Watt:** Press this submenu key to select Watt as the units of displayed power.
- **Back:** Press this submenu key to return to the Amplitude menu.

Figure 4-16. Units Menu (Amplitude)

4-14 Averages Menu

Key Sequence: Average

- **Running Averages:** Press this submenu key to set the number of measurements to be averaged. Use the numeric keypad to enter a number from 1 to 100 or use the arrow keys or the rotary knob. Press **Enter** to set the number.
- **Max Hold On Off:** Press this submenu key to toggle the Max Hold setting On or Off. When On, Max Hold sets the displayed measurement to show the maximum measured power. Note that changing any parameter resets this feature.

Figure 4-17. Averages Menu
4-15 Zero/Cal Menu

Key Sequence: **Zero/Cal**

Zero/Off: With no power applied to the sensor, press this submenu key to toggle the setting to On. A message is displayed: Please remove RF input power and press ENTER.

When Enter is pressed, another message is displayed: Zeroing... Please wait at least 1 minute and 20 seconds. When the message is no longer displayed, the zeroing is complete.

Cal Factor: Press this submenu key to display the Cal Factor menu.

Figure 4-18. Zero/Cal Menu

Please connect USB cable to sensor and wait...

4-16 Cal Factor Menu

Key Sequence: **Zero/Cal** > **Cal Factor**

Center Freq: Press this submenu key to set the center frequency. Use the arrow keys or the rotary knob to change the value and then press Enter. Or use the numeric keypad, and then press a Units submenu key for GHz, MHz, kHz, or Hz. Pressing Enter is the same as pressing MHz.

Signal Standard: Press this submenu key to display a list box of signal standards. Highlight a standard with the arrow keys or rotary knob and then press Enter.

Back: Press this submenu key to return to the Zero/Cal menu.

Figure 4-19. Cal Factor Menu
4-17 Limits Menu

Key Sequence: Limit

Limit
On Off: Press this submenu key to toggle limit settings On or Off.

Forward Upper Limit: Press this submenu key to set the Forward Upper Limit. Enter the desired number by using the keypad, the rotary knob, or the arrow keys. If the keypad was used to enter new values, press the Esc button to restore the previous setting, or press Enter (or the dB submenu key) to set the new value.

Forward Lower Limit: Press this submenu key to set the Forward Lower Limit. Enter the desired number by using the keypad, the rotary knob, or the arrow keys.

Reverse Upper Limit: Press this submenu key to set the Reverse Upper Limit. Enter the desired number by using the keypad, the rotary knob, or the arrow keys.

Reverse Lower Limit: Press this submenu key to set the Reverse Lower Limit. Enter the desired number by using the keypad, the rotary knob, or the arrow keys.

Duty Cycle: Press this submenu key to set the Duty Cycle that is used only in calculating the Burst Average Manual measurements. Refer to the “Burst Average Manual” submenu key in the “Forward Menu” on page 4-12. Enter the duty cycle of the burst signal by using the keypad, the rotary knob, or the arrow keys. Set the new value by pressing Enter or the % submenu key.

Video BW: Press this submenu key to display the Video BW menu.

CCDF Threshold: Press this submenu key to set the CCDF Threshold power. Use the numeric keypad to enter the power value. Press a submenu key in the Units menu that is displayed for the power units: W, mW, µW, nW, pW, or fW. Pressing Enter is the same as pressing W. Refer to the “CCDF” submenu key in the “Forward Menu” on page 4-12.
Key Sequence: Limit > Video BW

Refer to the “Peak Envelope Power” submenu key in the “Forward Menu” on page 4-12.

Full: Press this submenu key to set Full as the video bandwidth of the PEP (Peak Envelope Power) circuit of the MA24105A Inline Peak Power Sensor.

4 kHz: Press this submenu key to set 4 kHz as the video bandwidth of the PEP (Peak Envelope Power) circuit of the MA24105A Inline Peak Power Sensor.

200 kHz: Press this submenu key to set 200 kHz as the video bandwidth of the PEP (Peak Envelope Power) circuit of the MA24105A Inline Peak Power Sensor.

Back: Press this submenu key to return to the Limits menu.

Figure 4-21. Video BW Menu

a. PEP circuits are used on the following measurements: Peak Envelope Power, Crest Factor, CCDF, and Burst Average Power (Auto Mode).
4-19 Additional Menus

Additional Menus Opened with Keypad Menu Keys
Additional menus are available in some instrument modes by pressing the Shift key and a number key from 1 though 9 on the numeric keypad,

Instrument Mode Selector
Key Sequence: Shift > Mode (9) key

System Menu
Key Sequence: Shift > System (8) key
Refer to the User Guide for your instrument for a description of the System menu.

File Menu
Key Sequence: Shift > File (7) key
Refer to the User Guide for your instrument for a description of the File menu.

Limits Menu (Instrument)
Key Sequence: Shift > Limit (6) key
Do not use this menu with the MA24105A Inline Peak Power Sensor. Use the Limit main menu key to display the appropriate Limits menu.

Trace Menu
Key Sequence: Shift > Trace (5) key
This menu is not available when using the MA24105A Inline Peak Power Sensor.

Measure Menu
Key Sequence: Shift > Measure (4) key
This menu is not available when using the MA24105A Inline Peak Power Sensor.

Sweep Menu
Key Sequence: Shift > Sweep (3) key
This menu is not available when using the MA24105A Inline Peak Power Sensor.

Calibrate Menu
Key Sequence: Shift > Calibrate (2) key
This key combination displays the Zero/Cal menu. Refer to “Zero/Cal Menu” on page 4-17.
Preset Menu

Key Sequence: **Shift > Preset** (1) key

Refer to the User Guide for your instrument for a description of the Preset menu.
Appendix A — Error Messages

A-1 Introduction

This chapter provides a list of information and error messages that could be displayed on your instrument. If any error condition persists, contact your local Anritsu Service Center (http://www.anritsu.com/Contact.asp).

A-2 High Accuracy Power Meter Messages

Warning! Power Supply Error.

Verify that the supply is connected properly.

Warning! RF Power Level is too high.

The specified upper measurement range is +20 dBm. Do not exceed this.

Warning! Sensor not zeroed properly.

The sensor should be zeroed with nothing connected to it.

Warning! Specified temperature range (0 to 50C) exceeded.

The sensor is only specified from 0 to 50C.

Warning! Temperature has changed. Zero sensor again.

Temperature changed more than allowable limit after zeroing sensor.
Appendix B — Option 19 Power Sensors

B-1 Introduction

Table B-1 lists the USB power sensors available for High Accuracy Power Meter (Option 19).

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Frequency Range</th>
<th>Connector (50 Ω)</th>
<th>Datasheet (for complete specifications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSN50</td>
<td>High Accuracy RF Power Sensor</td>
<td>50 MHz to 6 GHz</td>
<td>Type N(m)</td>
<td>11410-00414</td>
</tr>
<tr>
<td>MA24104A</td>
<td>Inline High Power Sensor</td>
<td>600 MHz to 4 GHz</td>
<td>Type N(f)</td>
<td>11410-00483</td>
</tr>
<tr>
<td>MA24105A</td>
<td>Inline Peak Power Sensor</td>
<td>350 MHz to 4 GHz</td>
<td>Type N(f)</td>
<td>11410-00621</td>
</tr>
<tr>
<td>MA24106A</td>
<td>High Accuracy RF Power Sensor</td>
<td>50 MHz to 6 GHz</td>
<td>Type N(m)</td>
<td>11410-00424</td>
</tr>
<tr>
<td>MA24108A</td>
<td>Microwave USB Power Sensor</td>
<td>10 MHz to 8 GHz</td>
<td>Type N(m)</td>
<td>11410-00504</td>
</tr>
<tr>
<td>MA24118A</td>
<td>Microwave USB Power Sensor</td>
<td>10 MHz to 18 GHz</td>
<td>Type N(m)</td>
<td>11410-00504</td>
</tr>
<tr>
<td>MA24126A</td>
<td>Microwave USB Power Sensor</td>
<td>10 MHz to 26 GHz</td>
<td>Type K(m)</td>
<td>11410-00504</td>
</tr>
</tbody>
</table>
Index

A
accuracy of sensors 3-1
acquisition, measurement speed 2-14
amplitude menu 2-12, 3-7, 4-15
amplitude, setting 2-2, 3-3, 4-8
Anritsu, contact 1-1
attention message, MA24105A 4-7
attenuators
 and offset 3-1
 and offset calculations 3-3
 and power, HI_PM 3-1
 example setup 3-2
 using, with HI_PM 3-4
 using, with MA24105A .. 4-8
average menu 2-14, 3-8
averages menu, MA24105A 4-16
B
burst average power, MA24105A 4-12
burst average submenu key 4-12
C
cal factor
 MA24105A 4-8
 menu, MA24105A 4-17
 power meter 3-2
calibration
 correcting efficiency 3-1
 correcting mismatch loss .. 3-1
 MA24105A 4-8
 zero/cal 4-8
CCDF
 MA24105A 4-12
 submenu key 4-12
 threshold submenu key 4-18
connection setup, MA24105A 4-7
contacting Anritsu 1-1
crest factor, MA24105A 4-12
D
display menu, MA24105A 4-11
display units, setting 2-2, 3-2, 4-8
duty cycle submenu key 4-18
E
efficiency, calibration correction .. 3-1
equipment, required, sensors 3-2
error messages
 High Accuracy Power Meter A-1
F
firmware
 for MA24105A 4-1, 4-5
forward menu, MA24105A 4-12
Freq 2/2 Menu 2-9
frequency menu 2-7, 2-8
frequency, setting span 2-2
H
High Accuracy Power Meter
 attenuators and power 3-1
 error messages A-1
 main menu keys, MA24105A .. 4-5
 menu group 3-6
 sensors list 3-2
http, contacting Anritsu 1-1
L
limits
 menu 2-14, 3-9, 4-18
 pass/fail, setting 2-3
 procedure 3-5
links
 contacting Anritsu 1-1
 loss, mismatch, calibration correction . 3-1
M

MA24105A
 attention message 4-7
 burst average power 4-12
 cal factor 4-8
 calibration 3-1, 4-8
 CCDF 4-12
 CCDF threshold 4-18
 crest factor 4-12
 firmware 4-1
 general measurement setup ... 4-8
 image, back 4-4
 image, front 4-2
 image, RF input 4-3
 image, summary display 4-6
 image, USB port 4-3
 main menu keys 4-5
 menu group 4-10
 peak envelope power (PEP) ... 4-12
 reflection coefficient 4-14
 required equipment 4-1
 return loss 4-14
 USB cable message 4-7
 USB cable type 4-1
 using attenuators for offset . 4-8
 VSWR 4-14
 zero/cal 4-8
 zeroing to remove noise 3-1
main menu keys
HI_PM for MS24105A 4-5
measurements
HI_PM
 averaging 3-4
 limits 3-5
 Max Hold 3-4
 rel power 3-4
 scale change 3-3
 setup 3-2
 zero/cal 3-2
MA24105A
 burst average power 4-12
 CCDF 4-12
 crest factor 4-12
 peak envelope power (PEP) .. 4-12
 reflection coefficient 4-14
 return loss 4-14
 setup 4-8
 VSWR 4-14
PM
 limits 2-3
rel power 2-3
setup 2-2
span 2-2
speed of measurement 2-14
menu
 amplitude 2-12, 3-7, 4-15
 average 2-14, 3-8
 averages 4-16
 cal factor 4-17
 display 4-11
 forward 4-12
 frequency 2-7, 2-8
 limit 2-14, 3-9
 limits 4-18
 reverse 4-14
 span 2-11
 summary 4-14
 sweep 2-14
 units 2-13, 3-7
 Video BW 4-19
 Zero/Cal 3-8, 4-17
menu group
HI_PM 3-6
MA24105A 4-10
Power Meter 2-6
mismatch loss, calibration correction . 3-1
noise, removing by zeroing 3-1

O
offset
 amplitude menu 2-12, 3-7
 calculations with attenuator 3-3
 division offset, amplitude 2-12
 Enter Offset submenu key 3-7, 4-15
 entering value for attenuator 3-4
 external gain or loss 4-15
 Freq Offset submenu key 2-9
 frequency selection 2-2, 2-8
 function, frequency menu 2-8
 Step Size submenu key 2-9
 submenu key 2-9
 using attenuators, HI_PM 3-1
 using attenuators, MS24105A 4-8
option 19
 power sensors B-1

P
pass/fail limits, setting 2-3
peak envelope power (PEP), MA24105A 4-12
Power Meter menu group 2-6
power sensors, refer to sensors

R
reflection coefficient, MA24105A 4-14
relative forward power 4-15
relative power
 described 3-1
 setting 2-3, 3-4
relative reverse power 4-15
required equipment 3-2, 4-1
return loss, MA24105A 4-14
reverse menu, MA24105A 4-14

S
safety symbols
 for safety Safety-2
 in manuals Safety-1
 on equipment Safety-1
scale change 3-3, 4-8
selecting measurements
 MS24105A 4-9
sensors
 for HI_PM 3-2
 MA24105A Inline Peak Power 4-5
option19 B-1
zeroing 3-1
setting
 display units 2-2, 3-2, 4-8
 limits 3-5
 max and min display values 3-3
 pass/fail limits 2-3
 relative power 2-3
 running averages 3-4
 span freq 2-2
signal standard
 during calibration 3-2
 selecting, Internal Power Meter .. 2-2
 submenu key 2-7
 sweep freq 2-2
 span freq, setting 2-2
 span menu 2-11
standard, list of signal standards 2-7
summary display, MA24105A 4-6
summary menu, MA24105A 4-14
sweep menu 2-14

U
units
 menu 2-13, 3-7
 setting display units 2-2, 3-2
URL contacting Anritsu 1-1
USB cable
 for MA24105A 4-1
 setup for MA24105A 4-7
USB sensors for HI_PM 3-2, B-1

V
Video BW menu, MA24105A 4-19
VSWR, MA24105A 4-14

W
Web site, contacting Anritsu 1-1

Z
Zero/Cal menu
 HI_PM 3-8
 MA24105A 4-17
zeroing to remove noise 3-1