These specifications are the performance standards or limits against which the instrument is tested. When shipped from the factory, the E5100A meets the specifications listed in this section.

Values followed by (SPC) are supplemental performance characteristics.

Source

Frequency characteristics

- **Range**: 10 kHz to 300 MHz
- **Accuracy** (at 23 ±5 °C) ±20 ppm
 - With Option E5100A-1D5 (at 0 to 55 °C, 20 minutes after power on) ±1 ppm
- **Stability** (at 23 ±5 °C) ±5 x 10⁻⁶/day (SPC)
 - With Option E5100A-1D5 (48 hours after power on) ±2.5 x 10⁻⁹/8 hours (SPC)
- **Resolution** 1 mHz

Output power characteristics

(measured at RF OUT 1, RF OUT 2 is terminated with 50 Ω termination)

- **Range (nominal)**
 - With Option E5100A-001 –9 dBm to +11 dBm
 - With Option E5100A-002 –15 dBm to +5 dBm
 - With Option E5100A-003 –12 dBm to +8 dBm
 - With Option E5100A-801 –48 dBm to +22 dBm
 - With Option E5100A-802 –54 dBm to +16 dBm
 - With Option E5100A-803 –51 dBm to +19 dBm
 - With Option E5100A-600 (at RF OUT 1) –52 dBm to +18 dBm
 - With Option E5100A-600 (at RF OUT 2) –65 dBm to +5 dBm

- **Resolution** 0.1 dB
- **Level accuracy** (at 23 ±5 °C, 0 dBm output level, 50 MHz) ±1 dB
- **Flatness** (at 23 ±5 °C, relative to 0 dBm output level at 50 MHz) +2 dB, –4 dB
 - With Option E5100A-803 +2.5 dB, –4.5 dB
With Option E5100A-801 or E5100A-802
10 kHz ≤ frequency < 50 kHz +1.5 dB, –6 dB (SPC)
50 kHz ≤ frequency ≤ 100 MHz +2.5 dB, –4.5 dB
100 MHz < frequency ≤ 300 MHz +3 dB, –5 dB

With Option E5100A-600
10 kHz ≤ frequency < 50 kHz +1.5 dB, –7 dB (SPC)
50 kHz ≤ frequency ≤ 100 MHz +2.5 dB, –4.5 dB
100 MHz < frequency ≤ 300 MHz +3 dB, –5 dB

Linearity (at 23 ± 5 °C, relative to 0 dBm output level at 50 MHz) ±1 dB
With Option E5100A-801/802/803
Maximum power level –70 dB ≤ power level
< maximum power level –60 dB ±1.5 dB
Maximum power level –60 dB ≤ power level
≤ maximum power level .. ±1 dB

Power splitter
(When the analyzer is equipped with Option E5100A-001 or E5100A-003, delete this section.)

Insertion loss (When the analyzer is equipped with Option E5100A-600, delete this item.) 6 dB (nominal)

Output tracking
Without Option E5100A-600
10 kHz ≤ frequency ≤ 100 MHz 0.1 dB (SPC)
100 MHz < frequency ≤ 300 MHz 0.2 dB (SPC)
With Option E5100A-600
10 kHz ≤ frequency ≤ 100 MHz 13 dB ±0.3 dB (SPC)
100 MHz < frequency ≤ 300 MHz 13 dB ±0.5 dB (SPC)

Equivalent output SWR
Without Option E5100A-600
10 kHz ≤ frequency < 100 MHz ≤ 1.2 (SPC)
100 MHz ≤ frequency ≤ 300 MHz ≤ 1.4 (SPC)
With Option E5100A-600
10 kHz ≤ frequency < 50 kHz ≤ 2.5 (SPC)
50 kHz ≤ frequency ≤ 100 MHz ≤ 1.2 (SPC)
100 MHz < frequency ≤ 300 MHz ≤ 1.4 (SPC)

Spectral purity characteristics
Non–harmonic spurious signals (at < 300 MHz)
With Option E5100A-001 (at –4 dBm output level) < –45 dBc
With Option E5100A-002 (at –10 dBm output level) < –45 dBc
With Option E5100A-003 (at –7 dBm output level) < –45 dBc
With Option E5100A-600 (at 0 dBm output level) < –45 dBc
With Option E5100A-801 (at +6 dBm output level) < –45 dBc
With Option E5100A-802 (at 0 dBm output level) < –45 dBc
With Option E5100A-803 (at +3 dBm output level) < –45 dBc

Phase noise (at 10 kHz offset from 0 dBm fundamental) < –90 dBc/Hz

Other source information
Reverse power protection ... 20 dBm, 25 Vdc (SPC)
Output connector ... BNC female
Output impedance .. 50 Ω (nominal)

Receiver
Input characteristics
Frequency range ... 10 kHz to 300 MHz
1 MΩ input for Options E5100A-703/704/707/708 10 kHz to 5 MHz
IF bandwidth (IF BW) ... 10 Hz to 30 kHz, 1, 1.5, 2, 3, 4, 5, 8 step (nominal)
Impedance ... 50 Ω (nominal)
1 MΩ input for Option E5100A-703/704/707/708 ... 1 MΩ // 30 pF (nominal)
Return loss (at 50 Ω input)
10 kHz ≤ frequency < 100 MHz .. 20 dB (SPC)
100 MHz ≤ frequency ≤ 300 MHz 15 dB (SPC)

Maximum input level
50 Ω input

<table>
<thead>
<tr>
<th>Frequency</th>
<th>RF attenuator</th>
<th>Maximum input level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 kHz ≤ frequency < 200 kHz</td>
<td>25 dB</td>
<td>0 dBm</td>
</tr>
<tr>
<td>10 kHz ≤ frequency < 200 kHz</td>
<td>0 dB</td>
<td>–25 dBm</td>
</tr>
<tr>
<td>200 kHz ≤ frequency ≤ 300 MHz</td>
<td>25 dB</td>
<td>+5 dBm</td>
</tr>
<tr>
<td>200 kHz ≤ frequency ≤ 300 MHz</td>
<td>0 dB</td>
<td>–20 dBm</td>
</tr>
</tbody>
</table>

1 MΩ Input for Options E5100A-705/706/707/708

<table>
<thead>
<tr>
<th>Frequency 1</th>
<th>RF attenuator</th>
<th>Maximum input level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 kHz ≤ frequency < 200 kHz</td>
<td>25 dB</td>
<td>0.22 Vrms</td>
</tr>
<tr>
<td>10 kHz ≤ frequency < 200 kHz</td>
<td>0 dB</td>
<td>0.013 Vrms</td>
</tr>
<tr>
<td>200 kHz ≤ frequency ≤ 300 MHz</td>
<td>25 dB</td>
<td>0.40 Vrms</td>
</tr>
<tr>
<td>200 kHz ≤ frequency ≤ 300 MHz</td>
<td>0 dB</td>
<td>0.022 Vrms</td>
</tr>
</tbody>
</table>

1. Measurement frequency ≤ 5 MHz
Damage level

DC ... 25 Vdc
AC .. 20 dBm

Averaging noise level
(at magnitude measurement, 23 ±5 °C, RF attenuator: 0 dB, 50 Ω input)

<table>
<thead>
<tr>
<th>IF BW</th>
<th>Frequency Range</th>
<th>Noise Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF BW 30 kHz</td>
<td>(at > 1 MHz)</td>
<td>–100 dBm</td>
</tr>
<tr>
<td>IF BW 10 kHz</td>
<td>(at > 300 kHz)</td>
<td>–105 dBm</td>
</tr>
<tr>
<td>IF BW 3 kHz</td>
<td>(at > 100 kHz)</td>
<td>–110 dBm</td>
</tr>
<tr>
<td>IF BW 1 kHz</td>
<td>30 kHz ≤ frequency < 100 kHz</td>
<td>–95 dBm</td>
</tr>
<tr>
<td></td>
<td>100 kHz ≤ frequency ≤ 300 MHz</td>
<td>–115 dBm</td>
</tr>
<tr>
<td>IF BW 300 Hz</td>
<td>10 kHz ≤ frequency < 100 kHz</td>
<td>–100 dBm</td>
</tr>
<tr>
<td></td>
<td>100 kHz ≤ frequency ≤ 300 MHz</td>
<td>–120 dBm</td>
</tr>
<tr>
<td>IF BW 100 Hz</td>
<td>10 kHz ≤ frequency < 100 kHz</td>
<td>–105 dBm</td>
</tr>
<tr>
<td></td>
<td>100 kHz ≤ frequency ≤ 300 MHz</td>
<td>–125 dBm</td>
</tr>
</tbody>
</table>

Input crosstalk
(When the analyzer is equipped with Option E5100A-100, delete this section.) Referencing input (0 dBm input level at 10 kHz to 200 kHz and +5 dBm input level at 200 kHz to 300 MHz, RF attenuator: 25 dB, 50 Ω input)

Test input (RF attenuator: 0 dB, terminated with 50 Ω termination)

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Noise Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 kHz ≤ frequency < 100 kHz</td>
<td>< –110 dB</td>
</tr>
<tr>
<td>100 kHz ≤ frequency ≤ 300 MHz</td>
<td>< –120 dB</td>
</tr>
</tbody>
</table>

Source crosstalk
(all RF OUT and input connectors are terminated with 50 Ω terminations)

Without Option E5100A-801/802/803 (at +5 dBm output level, RF attenuator: 0 dB, 50 Ω input)

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Noise Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 kHz ≤ frequency < 100 kHz</td>
<td>< –110 dB (SPC)</td>
</tr>
<tr>
<td>100 kHz ≤ frequency < 250 MHz</td>
<td>< –125 dB (SPC)</td>
</tr>
<tr>
<td>250 MHz ≤ frequency ≤ 300 MHz</td>
<td>< –120 dB (SPC)</td>
</tr>
</tbody>
</table>

With Option E5100A-801/802/803 (at +16 dBm output level, RF attenuator: 0 dB, 50 Ω input)

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Noise Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 kHz ≤ frequency < 100 kHz</td>
<td>< –120 dB (SPC)</td>
</tr>
<tr>
<td>100 kHz ≤ frequency < 250 MHz</td>
<td>< –135 dB (SPC)</td>
</tr>
<tr>
<td>250 MHz ≤ frequency ≤ 300 MHz</td>
<td>< –130 dB (SPC)</td>
</tr>
</tbody>
</table>

1. When the analyzer frequency is identical to the transmitted interference signal frequency, refer to “EMC” in “general characteristics.”
Residual response
(RF attenuator: 0 dB, except for the following points) < –80 dBm
50 kHz, 100 kHz, 95.825 MHz, 95.875 MHz, 159.791667 MHz, 159.825 MHz,
159.841667 MHz, 239.75 MHz, and 239.875 MHz

Input connector BNC female
With Option E5100A-705/706/707/708 BNC female,
Type-N female (for A, B inputs)

Measurement mode
With Option E5100A-100 A
With Option E5100A-200 or E5100A-600 A/R, R/A, R, A
With Option E5100A-400 A/R, B/R, C/R, R/A, B/A, C/A, R/B, A/B,
(When the measurement mode is either R/A, B/A, C/A, R/B, A/B, C/B,
R/C, or A/C, the specification is SPC.)

Magnitude characteristics

Absolute characteristics
Absolute amplitude accuracy
(at 23 ±5 °C, –30 dBm input level for RF attenuator: 0 dB or –5 dBm input
level for RF attenuator: 25 dB, 50 Ω input)
±1 dB

Ratio characteristics
Frequency response
(at 23 ±5 °C, –30 dBm input level for RF attenuator: 0 dB or –5 dBm input
level for RF attenuator: 25 dB, the same RF attenuator setting for both inputs)
50 Ω input
10 kHz ≤ frequency < 100 kHz ±1 dB
100 kHz ≤ frequency ≤ 100 MHz ±0.5 dB
100 MHz < frequency ≤ 300 MHz ±1 dB
1 MΩ input for Option E5100A-703/704/707/708
(using 50 Ω feedthrough) ±3 dB

1. Frequency response can be improved by calibration.
Dynamic accuracy
(at 23 ±5 °C, 10 Hz IF BW, –10 dBm reference input level relative to maximum input level, –20 dBm test input level relative to maximum input level, except for ramp frequency sweep)

<table>
<thead>
<tr>
<th>Test channel input level</th>
<th>Dynamic accuracy</th>
<th>RF attenuator</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 dB</td>
<td>0 dB</td>
<td>Other</td>
<td>10 kHz to 50 kHz</td>
</tr>
<tr>
<td>+5 to –5 dBm¹</td>
<td>–20 to –30 dBm²</td>
<td>±0.4 dB</td>
<td>±0.4 dB (SPC)</td>
</tr>
<tr>
<td>–5 to –15 dBm</td>
<td>–30 to –40 dBm</td>
<td>±0.09 dB</td>
<td>±0.09 dB (SPC)</td>
</tr>
<tr>
<td>–15 to –45 dBm</td>
<td>–40 to –70 dBm</td>
<td>±0.05 dB</td>
<td>±0.05 dB (SPC)</td>
</tr>
<tr>
<td>–45 to –55 dBm</td>
<td>–70 to –80 dBm</td>
<td>±0.06 dB</td>
<td>±0.1 dB (SPC)</td>
</tr>
<tr>
<td>–55 to –65 dBm</td>
<td>–80 to –90 dBm</td>
<td>±0.1 dB</td>
<td>±0.3 dB (SPC)</td>
</tr>
<tr>
<td>–65 to –75 dBm</td>
<td>–90 to –100 dBm</td>
<td>±0.3 dB</td>
<td>±0.9 dB (SPC)</td>
</tr>
<tr>
<td>–75 to –85 dBm</td>
<td>–100 to –110 dBm</td>
<td>±0.9 dB</td>
<td>±3 dB (SPC)</td>
</tr>
<tr>
<td>–85 to –95 dBm</td>
<td>–110 to –120 dBm</td>
<td>±3 dB</td>
<td>N/A</td>
</tr>
</tbody>
</table>

With Option E5100A-100
(at 23 ±5 °C, 10 Hz IF BW, –20 dB input-A level relative to maximum input level, except for ramp frequency sweep, right after measuring reference)

<table>
<thead>
<tr>
<th>Test channel input level</th>
<th>Dynamic accuracy</th>
<th>RF attenuator</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 dB</td>
<td>0 dB</td>
<td>Other</td>
<td>10 kHz to 50 kHz</td>
</tr>
<tr>
<td>+5 to –5 dBm¹</td>
<td>–20 to –30 dBm²</td>
<td>±0.4 dB</td>
<td>±0.4 dB (SPC)</td>
</tr>
<tr>
<td>–5 to –45 dBm</td>
<td>–30 to –70 dBm</td>
<td>±0.1 dB</td>
<td>±0.1 dB (SPC)</td>
</tr>
<tr>
<td>–45 to –55 dBm</td>
<td>–70 to –80 dBm</td>
<td>±0.1 dB</td>
<td>±0.2 dB (SPC)</td>
</tr>
<tr>
<td>–55 to –65 dBm</td>
<td>–80 to –90 dBm</td>
<td>±0.2 dB</td>
<td>±0.6 dB (SPC)</td>
</tr>
<tr>
<td>–65 to –75 dBm</td>
<td>–90 to –100 dBm</td>
<td>±0.6 dB</td>
<td>±1.8 dB (SPC)</td>
</tr>
</tbody>
</table>

Trace noise
(at 1 kHz IF BW, frequency > 305 kHz, –5 dBm input level for RF attenuator: 25 dB or –30 dBm input level for RF attenuator: 0 dB) .. < 10 dBm rms

Stability ... 0.02 dB/°C (SPC)

With Option E5100A-100
(at 23 ±5 °C) ... 0.05 dB/°C (SPC)

1. 0 to –5 dBm at 10 kHz to 200 kHz
2. –25 to –30 dBm at 10 kHz to 200 kHz
Phase characteristics
(When the analyzer is equipped with Option E5100A-100, delete this section.)

Measurement mode
- Normal/Expanded

Frequency response
(at 23 ± 5 °C, –30 dBm input level for RF attenuator: 0 dB or –5 dBm input level for RF attenuator: 25 dB, the same RF attenuator setting for both inputs, 50 Ω input)

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 kHz ≤ frequency < 100 kHz</td>
<td>±5°</td>
</tr>
<tr>
<td>100 kHz ≤ frequency ≤ 100 MHz</td>
<td>±2.5°</td>
</tr>
<tr>
<td>100 MHz < frequency ≤ 300 MHz</td>
<td>±5°</td>
</tr>
</tbody>
</table>

Dynamic accuracy
(at 23 ± 5 °C, 10 Hz IF BW, –10 dBm reference input level relative to maximum input level, –20 dBm test input level relative to maximum input level, except for ramp frequency sweep)

<table>
<thead>
<tr>
<th>Test channel input level</th>
<th>Dynamic accuracy frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF attenuator</td>
<td></td>
</tr>
<tr>
<td>25 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td>+5 to –5 dBm</td>
<td>–20 to –30 dBm^2</td>
</tr>
<tr>
<td>–5 to –15 dBm</td>
<td>–30 to –40 dBm</td>
</tr>
<tr>
<td>–15 to –45 dBm</td>
<td>–40 to –70 dBm</td>
</tr>
<tr>
<td>–45 to –55 dBm</td>
<td>–70 to –80 dBm</td>
</tr>
<tr>
<td>–55 to –65 dBm</td>
<td>–80 to –90 dBm</td>
</tr>
<tr>
<td>–65 to –75 dBm</td>
<td>–90 to –100 dBm</td>
</tr>
<tr>
<td>–75 to –85 dBm</td>
<td>–100 to –110 dBm</td>
</tr>
<tr>
<td>–85 to –95 dBm</td>
<td>–110 to –120 dBm</td>
</tr>
</tbody>
</table>

Trace noise
(at 1 kHz IF BW, frequency > 305 kHz, –5 dBm input level for RF attenuator: 25 dB or –30 dBm input level for RF attenuator: 0 dB)

<table>
<thead>
<tr>
<th>Trace noise evaluation</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF attenuator: 25 dB</td>
<td>< 50 mdeg rms</td>
</tr>
<tr>
<td>RF attenuator: 0 dB</td>
<td>< 50 mdeg rms</td>
</tr>
</tbody>
</table>

Stability
- 0.15 deg/°C (SPC)

1. This frequency response is only for the deviation from linear phase. Frequency response can be improved by calibration.
2. 0 to –5 dBm at 10 kHz to 200 kHz
3. –25 to –30 dBm at 10 kHz to 200 kHz
Delay characteristics

Aperture frequency

\[\text{Aperture frequency} = \frac{200}{N-1} \% \text{ to 100\% of span, where } N \text{ is number of points} \]

Accuracy (at 23 ±5 °C, SPC)

In general, the following formula can be used to determine the accuracy, in seconds, of a specific group delay measurement:

\[\text{Phase accuracy} \left[\text{deg} \right] = \frac{360 \left[\text{deg} \right] \times \text{aperture} \left[\text{Hz} \right]}{\text{sec}} \]

Depending on the aperture, input level, and device length, the phase accuracy used in either incremental phase accuracy or worst case phase accuracy.

General characteristics

Operating conditions

When disk drive is in operation

- **Temperature**: 10 to 40 °C
- **Humidity (at wet bulb ≤ 29 °C, without condensation)**: 15% ≤ RH ≤ 80%

When disk drive is not in operation

- **Temperature**: 5 to 40 °C
- **Humidity (at wet bulb ≤ 29 °C, without condensation)**: 15% ≤ RH ≤ 80%
- **Altitude**: 0 to 2,000 meters
- **Warm-up time**: 30 minutes

Non-operating conditions

- **Temperature**: –20 to 60 °C
- **Humidity (at wet bulb ≤ 40 °C, without condensation)**: 15% ≤ RH ≤ 90%
- **Altitude**: 0 to 4,572 meters

Safety

- Certified by CSA-C22.2 No.1010.1-92, Based on IEC 1010-1 (1990) including Amendment 1 (1992)

EMC

- Complies with CISPR 11(1990)/EN 55011(1991): Group 1, Class A
- Complies with IEC 801-4 (1988)/EN 55082-1(1992): 1 kV power lines, 0.5 kV signal lines

Power requirement

- 90 to 132 V or 198 to 264 V, 47 to 63 Hz, 400 VA max

Weight (depending on option)

- 12 kg (SPC)

Cabinet dimensions

- 425(W) x 177(H) x 425(D) mm (SPC)

1. When tested at 3 V/m according to IEC 801-3/1984, the averaging noise level will be within specifications over the full immunity test frequency range of 26 to 1000 MHz except when the analyzer frequency is identical to the transmitted interference signal test frequency.
Supplemental characteristics

Measurement function

- **Number of measurement channels**: 1 to 4
- **Display format**: Cartesian
- **Sweep parameter**: frequency, power
- **Sweep type**: linear (step, ramp), list
- **Measurement point per sweep**: E5100A 2 to 1,601

Others

- **Measurement calibration**: response, response and isolation, 1-port 3-term
- **Display**: 6.5 inch color LCD, 640 x 480 dots
- **Flexible disk drive**: 720 Kbytes/1.2 Mbytes/1.44 Mbytes, DOS format, binary or ASCII format
- **Flash disk**: 256 Kbytes
- **Ram disk**: 256 Kbytes
- **Programming**: Instrument BASIC
- **GPIB**: ANSI/IEEE 488.2 compatible
- **Parallel I/O port**: 16 bit output, 8 bit input/output, TTL level
 - Option E5100A-005: 8 bit output, 4 bit input, TTL level
 - Option E5100A-006: 16 bit output, 8 bit input/output, TTL level
 - Option E5100A-007: 16 bit output, 8 bit input, open collector, opto-isolated
- **Printer**: Parallel I/F (Centronics compatible), HP PCL
- **Keyboard**: mini-DIN (IBM PC compatible)
- **External video monitor output**: mini-DIN, VGA

Connectors

- **Probe power**: +15 V (300 mA max.), -12.6 V (160 mA max.), GND nominal
 (the maximum current values are total values of each probe connector)
EXT REF INPUT 10 MHz
Frequency ... 10 MHz ±5 ppm
Amplitude ... 0 ±5 dBm (SPC)
Nominal impedance 50 Ω

REF OVEN (OPTION E5100A-1D5)
Frequency (at 0 to 55 °C, 20 minutes after power ON) 10 MHz ±1.0 ppm
Amplitude ... 2 ±5 dBm (SPC)
Nominal impedance 50 Ω

INT REF OUTPUT
Frequency (at 23 ±5 °C) 10 MHz ±20 ppm
Amplitude ... 0 ±5 dBm (SPC)
Nominal impedance 50 Ω

EXT TRIGGER and EXT PROG RUN/CONT
(Please choose either or both)
V_{ih} .. +2 V to +5 V (SPC)
V_{il} .. 0 V to +0.5 V (SPC)
Sink current (Is) $Is \leq 0.4$ mA (SPC)
Pulse width (Tp) $Tp \geq 20$ μsec (SPC)

Furnished accessories

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Qty.</th>
<th>Agilent part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power cable</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sample program disk</td>
<td>1</td>
<td>E5100-180X0</td>
</tr>
<tr>
<td>CD-ROM (manuals)</td>
<td>1</td>
<td>E5100-905XX</td>
</tr>
</tbody>
</table>

Option E5100A-ABA add manuals
Function Reference	1	E5100-900X0
Programming Manual	1	E5100-900X7
User’s Guide	1	E5100-900X1
Instrument BASIC Users Handbook	1	04155-90150
Instrument BASIC Users Handbook Supplement	1	E5100-900X5

Option E5100A-BBW add Service Manual
| Service Manual | 1 | E5100-901X0 |

Option E5100A-1CM rack mount kit
| Front handle kit | 1 | 5062-3978 |

Option E5100A-1CP front handle kit
| Rack and handle kit | 1 | 5062-3990 |

Option E5100A-1CP rack and handle kit
| Rack and handle kit | 1 | 5062-3984 |

Option E5100A-1D5 high stability frequency
| BNC adapter | 1 | 1250-1859 |

Option E5100A-1F0 external keyboard
| Keyboard | 1 | – |

1. Furnished with special sample program disk (E5100-180X1) as well as the original one if Option E5100A-022/023 is designated. The number indicated by “X” in the part number of the sample program disk, is allocated for numbers increased by one each time a revision is made. The latest edition comes with the product.
2. The number indicated by “X” in the part number of each manual, is allocated for numbers increased by one each time a revision is made. The latest edition comes with the product.
Agilent Technologies’ Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Two concepts underlie Agilent’s overall support policy: “Our Promise” and “Your Advantage.”

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you receive your new Agilent equipment, we can help verify that it works properly and help with initial product operation.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

www.agilent.com

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Phone or Fax

United States:
(tel) 800 829 4444
(fax) 800 829 4433

Canada:
(tel) 877 894 4414
(fax) 800 746 4866

China:
(tel) 800 810 0189
(fax) 800 820 2816

Europe:
(tel) 31 20 547 2111

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (080) 769 0800
(fax) (080) 769 0900

Latin America:
(tel) (305) 269 7500

Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6755 0042
Email: tm_ap@agilent.com
Contacts revised: 09/26/05

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2003, 2006
Printed in USA, July 13, 2006
5966-2888E