Agilent
ESG Family of RF Signal Generators
Data Sheet

Analog only Digital and analog

<table>
<thead>
<tr>
<th>Analog only</th>
<th>Digital and analog</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESG-A series</td>
<td>ESG-AP series (high spectral purity)</td>
</tr>
<tr>
<td>250 kHz – 1 GHz</td>
<td>E4400B</td>
</tr>
<tr>
<td>250 kHz – 2 GHz</td>
<td>E4420B</td>
</tr>
<tr>
<td>250 kHz – 3 GHz</td>
<td>E4421B</td>
</tr>
<tr>
<td>250 kHz – 4 GHz</td>
<td>E4422B</td>
</tr>
</tbody>
</table>

Notice
This document is updated as often as once a month. Please contact Agilent Technologies for the latest information or check the ESG Web site at http://www.agilent.com/find/esg
Table of contents

- Introduction ... 3
- Specifications for analog and digital models .. 4
- Characteristic SSB phase noise for ESG-AP and ESG-DP series 6
- Specifications for digital models only ... 10
- I/Q baseband generator ... 11
- Dual arbitrary waveform generator ... 16
- Multichannel, multicarrier CDMA personality ... 17
- Bit Error Rate (BER) analyzer ... 18
- GSM/EDGE base station Bit Error Rate Test (BERT) .. 18
- Baseband BER (Bit Error Rate) tester ... 19
- Multichannel 3GPP W-CDMA personality ... 20
- Multichannel cdma2000 personality .. 21
- Real-time 3GPP W-CDMA personality ... 23
- Real-time cdma2000 personality .. 25
- Real-time EDGE personality ... 27
- Alternate time slot power level control .. 27
- Improved ACP performance for TETRA, CDMA and W-CDMA 27
- General characteristics .. 28
- Ordering information ... 30
- ESG family application and product information ... 31
Introduction

Standard Agilent Technologies ESG family RF signal generators incorporate a broad array of capabilities for testing both analog and digital communications systems. Adding flexible options provides a test solution that will evaluate the performance of a communication system to the requirements of nearly all current and proposed air interface standards. Many test functions can be customized to meet the needs of proprietary and other nonstandard wireless protocols as well. You can configure your instrument to address a wide variety of tests—from altering nearly every aspect of a digital signal or signal operating environment, to creating experimental signals. This flexibility, along with an architecture that accepts future enhancements makes the ESG family an excellent choice for wireless communications system testing now and in the future.

ESG family of RF signal generators

The family consists of four series:

ESG-A series: analog instruments
 E4400B, E4420B, E4421B, E4422B

ESG-AP series: analog instruments with high spectral purity
 E4423B, E4424B, E4425B, E4426B

ESG-D series: digital and analog instruments
 E4430B, E4431B, E4432B, E4433B

ESG-DP series: digital and analog instruments with high spectral purity
 E4434B, E4435B, E4436B, E4437B

Please refer to the related literature in the section ESG family application and product information for additional information.

Key standard features for entire family

- Expandable architecture
- Broad frequency coverage
- Choice of electronic or mechanical attenuator
- Superior level accuracy
- Wideband FM and φM
- Step sweep (frequency, power and list)
- Built-in function generator
- Lightweight, rack-mountable
- 3-year warranty
- 2-year calibration cycle

Standard features only in the digital series

- Broadband analog I/Q inputs
- I/Q adjustment capabilities and internal calibration
- Excellent modulation accuracy and stability
- Coherent carrier output

Options available only with the digital series

- Built-in dual arbitrary waveform generator
- Multichannel, multicarrier CDMA personality
- Multichannel, multicarrier W-CDMA 1.0 personality
- Multichannel cdma2000 personality
- Real-time 3GPP W-CDMA personality
- Real-time cdma2000 personality
- Real-time EDGE personality
- Internal bit-error-rate analyzer
- Versatile timeslot, data and burst generation
- Adjustable symbol rates, filter factors and burst shape
- Digital modulation formats for DECT, GSM, NADC, PDC, PHS, and TETRA

Options available only with the analog series

- High-performance pulse modulation
Specifications for analog and digital models

Frequency

<table>
<thead>
<tr>
<th>Range</th>
<th>ESG-A series</th>
<th>ESG-AP series</th>
<th>ESG-D series</th>
<th>ESG-DP series</th>
</tr>
</thead>
<tbody>
<tr>
<td>E4400B</td>
<td>250 kHz to 1 GHz</td>
<td>E4423B</td>
<td>250 kHz to 1 GHz</td>
<td></td>
</tr>
<tr>
<td>E4420B</td>
<td>250 kHz to 2 GHz</td>
<td>E4424B</td>
<td>250 kHz to 2 GHz</td>
<td></td>
</tr>
<tr>
<td>E4421B</td>
<td>250 kHz to 3 GHz</td>
<td>E4425B</td>
<td>250 kHz to 3 GHz</td>
<td></td>
</tr>
<tr>
<td>E4422B</td>
<td>250 kHz to 4 GHz</td>
<td>E4426B</td>
<td>250 kHz to 4 GHz</td>
<td></td>
</tr>
</tbody>
</table>

Underrange
- 100 kHz

Resolution
- 0.01 Hz

Accuracy
- Same as timebase

Switching speed (typical)

<table>
<thead>
<tr>
<th>Modulation on</th>
<th>ESG-A and ESG-D series</th>
<th>ESG-AP and ESG-DP series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog</td>
<td><50 ms</td>
<td><65 ms</td>
</tr>
<tr>
<td>Digital</td>
<td><90 ms</td>
<td><100 ms</td>
</tr>
<tr>
<td>Modulation off</td>
<td><40 ms</td>
<td><55 ms</td>
</tr>
</tbody>
</table>

Phase offset
- Phase is adjustable via GPIB or front panel in nominal 0.1° increments

Frequency bands

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequency range</th>
<th>N #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>250 kHz to 499.999 MHz</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>>499.999 to 500 MHz</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>>500 MHz to 1 GHz</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>>1 to 2 GHz</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>>2 to 4 GHz</td>
<td>4</td>
</tr>
</tbody>
</table>

Sweep modes

<table>
<thead>
<tr>
<th>Operating modes</th>
<th>Frequency step, amplitude step and arbitrary list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dwell time</td>
<td>1 ms to 60 s</td>
</tr>
<tr>
<td>Number of points</td>
<td>2 to 401</td>
</tr>
</tbody>
</table>

Internal reference oscillator

<table>
<thead>
<tr>
<th>Stability</th>
<th>ESG-A and ESG-D series standard</th>
<th>ESG-AP and ESG-DP series standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging rate</td>
<td><±1 ppm/yr</td>
<td><±0.1 ppm/yr or <±0.0005 ppm/day after 45 days</td>
</tr>
<tr>
<td>Temp. (0 to 55° C)</td>
<td><±1 ppm, typical</td>
<td><±0.05 ppm, typical</td>
</tr>
<tr>
<td>Line voltage</td>
<td><±0.1 ppm, typical (+5%, −10%)</td>
<td><±0.002 ppm, typical (+5%, −10%)</td>
</tr>
</tbody>
</table>

Timebase reference output

| Frequency | 10 MHz |
| Amplitude | >0.35 Vrms into 50 Ω load |

External reference input

Frequency	1, 2, 5, 10 MHz ± typical 10 ppm (typical 1 ppm, ESG-AP and ESG-DP series, ESG-A and ESG-D series Option 1E5)
Amplitude	>0.15 Vrms
Input impedance	50 Ω

Output

<table>
<thead>
<tr>
<th>Power²</th>
<th>Standard</th>
<th>Option UNB</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 kHz to 1 GHz</td>
<td>+13 to −136 dBm</td>
<td>+17 to −136 dBm</td>
</tr>
<tr>
<td>>1 to 3 GHz</td>
<td>+10 to −136 dBm</td>
<td>+16 to −136 dBm</td>
</tr>
<tr>
<td>>3 to 4 GHz</td>
<td>+7 to −136 dBm</td>
<td>+13 to −136 dBm</td>
</tr>
</tbody>
</table>

Typical maximum available power

![Graph](image)

1. To within 0.1 ppm of final frequency above 250 MHz or within 100 Hz below 250 MHz.
2. With high performance pulse modulation (Option 1E6) installed, all maximum power specifications drop by 4 dB.

Specifications describe the instrument’s warranted performance and apply after a 45 minute warm-up. All specifications are valid over the signal generator’s entire operating/environmental range while in phase noise mode 2, unless otherwise noted. Supplemental characteristics, denoted typical or nominal, provide additional (nonwarranted) information useful in applying the instrument.
Resolution
0.02 dB

Attenuator hold level range

<table>
<thead>
<tr>
<th>Range</th>
<th>Standard</th>
<th>Option UNB</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 kHz to 1 GHz</td>
<td>23 dB</td>
<td>27 dB</td>
</tr>
<tr>
<td>>1 GHz to 3 GHz</td>
<td>20 dB</td>
<td>26 dB</td>
</tr>
<tr>
<td>>3 GHz to 4 GHz</td>
<td>17 dB</td>
<td>23 dB</td>
</tr>
</tbody>
</table>

Level accuracy (dB)

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>+7 to –120 dBm</th>
<th>–120 to Option UNB</th>
<th>–127 dBm</th>
<th>–127 dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 kHz to 2 GHz</td>
<td>±0.5</td>
<td>±0.5</td>
<td>±1.5</td>
<td>±1.5</td>
</tr>
<tr>
<td>2 to 3 GHz</td>
<td>±0.9</td>
<td>±0.9</td>
<td>±2.5</td>
<td>±2.5</td>
</tr>
<tr>
<td>3 to 4 GHz</td>
<td>±0.9</td>
<td>±0.9 (±1.5, Option UNB)</td>
<td>±2.5</td>
<td>±2.5</td>
</tr>
</tbody>
</table>

Output power

<table>
<thead>
<tr>
<th>Freq range</th>
<th>Output power</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+10 to –120 dBm, –120 to Option UNB)</td>
<td>–127 dBm</td>
</tr>
<tr>
<td>250 kHz to 2 GHz</td>
<td>±0.5</td>
</tr>
<tr>
<td>2 to 3 GHz</td>
<td>±0.9</td>
</tr>
<tr>
<td>3 to 4 GHz</td>
<td>±0.9 (±1.5, Option UNB)</td>
</tr>
</tbody>
</table>

Spectral purity

SSB phase noise
(at 20 kHz offset)

<table>
<thead>
<tr>
<th>ESG-A and ESG-D Series</th>
<th>ESG-AP and ESG-DP Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>at 500 MHz</td>
<td>(<–120 dBc/Hz, (<–138 dBc/Hz)</td>
</tr>
<tr>
<td>at 1 GHz</td>
<td>(<–116 dBc/Hz, (<–134 dBc/Hz)</td>
</tr>
<tr>
<td>at 2 GHz</td>
<td>(<–110 dBc/Hz, (<–127 dBc/Hz)</td>
</tr>
<tr>
<td>at 3 GHz</td>
<td>(<–104 dBc/Hz, (<–124 dBc/Hz)</td>
</tr>
<tr>
<td>at 4 GHz</td>
<td>(<–104 dBc/Hz, (<–124 dBc/Hz)</td>
</tr>
</tbody>
</table>

Residual FM
(CW mode, 0.3 to 3 kHz BW, CCITT, rms)

<table>
<thead>
<tr>
<th>ESG-A and ESG-D Series</th>
<th><N x 1 Hz (<N x 0.5 Hz, typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase noise mode 1</td>
<td><N x 2 Hz</td>
</tr>
<tr>
<td>Phase noise mode 2</td>
<td><N x 4 Hz</td>
</tr>
</tbody>
</table>

Harmonics

<table>
<thead>
<tr>
<th>(≤+4 dBm (≤+7.5 dBm, Option UNB) output level)</th>
<th><–30 dBc (typical below 1 GHz)</th>
</tr>
</thead>
</table>

Nonharmonics

<table>
<thead>
<tr>
<th>(≤+7 dBm (<+10 dBm, Option UNB) output level)</th>
<th><–65 dBc (<–75 dBc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 kHz to 250 MHz</td>
<td><–65 dBc (<–75 dBc)</td>
</tr>
<tr>
<td>250 MHz to 500 MHz</td>
<td><–65 dBc (<–75 dBc)</td>
</tr>
<tr>
<td>500 MHz to 1 GHz</td>
<td><–65 dBc (<–75 dBc)</td>
</tr>
<tr>
<td>1 to 2 GHz</td>
<td><–69 dBc (<–74 dBc)</td>
</tr>
<tr>
<td>>2 GHz</td>
<td><–63 dBc (<–68 dBc)</td>
</tr>
</tbody>
</table>

Subharmonics

<table>
<thead>
<tr>
<th>ESG-A and ESG-AP and ESG-D series6</th>
<th>ESG-AP and ESG-DP series7</th>
</tr>
</thead>
<tbody>
<tr>
<td>>3 kHz offset</td>
<td>>10 kHz offset1</td>
</tr>
<tr>
<td>>3 kHz offset</td>
<td>>3 kHz offset2</td>
</tr>
<tr>
<td>>10 kHz offset</td>
<td>>10 kHz offset3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset (MHz)</th>
<th><–65 dBc</th>
<th><–65 dBc</th>
<th><–75 dBc</th>
<th><–75 dBc</th>
<th><–80 dBc</th>
<th><–80 dBc</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 kHz to 250 MHz</td>
<td>(<–65 dBc)</td>
<td>(<–65 dBc)</td>
<td>(<–75 dBc)</td>
<td>(<–75 dBc)</td>
<td>(<–80 dBc)</td>
<td>(<–80 dBc)</td>
</tr>
<tr>
<td>250 MHz to 500 MHz</td>
<td>(<–65 dBc)</td>
<td>(<–65 dBc)</td>
<td>(<–75 dBc)</td>
<td>(<–75 dBc)</td>
<td>(<–80 dBc)</td>
<td>(<–80 dBc)</td>
</tr>
<tr>
<td>500 MHz to 1 GHz</td>
<td>(<–65 dBc)</td>
<td>(<–65 dBc)</td>
<td>(<–75 dBc)</td>
<td>(<–75 dBc)</td>
<td>(<–80 dBc)</td>
<td>(<–80 dBc)</td>
</tr>
<tr>
<td>1 to 2 GHz</td>
<td>(<–59 dBc)</td>
<td>(<–59 dBc)</td>
<td>(<–74 dBc)</td>
<td>(<–74 dBc)</td>
<td>(<–74 dBc)</td>
<td>(<–74 dBc)</td>
</tr>
<tr>
<td>>2 GHz</td>
<td>(<–53 dBc)</td>
<td>(<–53 dBc)</td>
<td>(<–63 dBc)</td>
<td>(<–63 dBc)</td>
<td>(<–68 dBc)</td>
<td>(<–68 dBc)</td>
</tr>
</tbody>
</table>

1. For 23 °C ±5 °C. Accuracy degrades by 0.02 dB/°C over the full temperature range and by 0.3 dB above +7 dBm (degraded by 0.5 dB above +10 dBm with Option UNB).

2. Level accuracy specification maintained only with return to calibration.

4. Refer to frequency bands on page 4 to compute specifications.

5. Performance is typical for spurs at frequencies above the maximum operating frequency of the instrument. Performance typically is –60 dBc between 225 and 249.999 MHz.

6. Specifications apply for FM deviations <100 kHz and are not valid for FM.

7. For non-constant amplitude digital formats, unspecified spur levels occur up to the second harmonic of the baseband rates.

Notes:

- For 23 °C ±5 °C. Accuracy degrades by 0.02 dB/°C over the full temperature range and by 0.3 dB above +7 dBm (degraded by 0.5 dB above +10 dBm with Option UNB).
- Level accuracy specification maintained only with return to calibration.
- Parentheses denote typical performance.
- Refer to frequency bands on page 4 to compute specifications.
- Performance is typical for spurs at frequencies above the maximum operating frequency of the instrument. Performance typically is –60 dBc between 225 and 249.999 MHz.
- Specifications apply for FM deviations <100 kHz and are not valid for FM.
- For non-constant amplitude digital formats, unspecified spur levels occur up to the second harmonic of the baseband rates.
- Specifications apply for CW mode only.
Characteristic SSB phase noise for ESG-AP and ESG-DP series

- $f_c = 100$ MHz (CW, standard instrument)
- $f_c = 500$ MHz (CW, standard instrument)
- $f_c = 1$ GHz (CW, standard instrument)
- $f_c = 2$ GHz (CW, standard instrument)
- $f_c = 4$ GHz (CW, standard instrument)
- $f_c = 900$ MHz (CW and I/Q modulation on)
- $f_c = 1.8$ GHz (CW and I/Q modulation on)
Jitter in µUI

<table>
<thead>
<tr>
<th>Carrier frequency</th>
<th>SONET/SDH data rates</th>
<th>rms jitter bandwidth</th>
<th>ESG-A, ESG-D series (µUI RMS)</th>
<th>ESG-AP, ESG-DP series (µUI RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>155 MHz</td>
<td>155 MB/s</td>
<td>100 Hz to 1.5 MHz</td>
<td>(239)</td>
<td>(43)</td>
</tr>
<tr>
<td>622 MHz</td>
<td>622 MB/s</td>
<td>1 kHz to 5 MHz</td>
<td>(149)</td>
<td>(34)</td>
</tr>
<tr>
<td>2.488 GHz</td>
<td>2488 MB/s</td>
<td>5 kHz to 15 MHz</td>
<td>(375)</td>
<td>(73)</td>
</tr>
</tbody>
</table>

Jitter in seconds

<table>
<thead>
<tr>
<th>Carrier frequency</th>
<th>SONET/SDH data rates</th>
<th>rms jitter bandwidth</th>
<th>ESG-A, ESG-D series N x 1 MHz</th>
<th>ESG-AP, ESG-DP series N x 1 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>155 MHz</td>
<td>155 MB/s</td>
<td>100 Hz to 1.5 MHz</td>
<td>(1.54 ps)</td>
<td>(277 fs)</td>
</tr>
<tr>
<td>622 MHz</td>
<td>622 MB/s</td>
<td>1 kHz to 5 MHz</td>
<td>(240 fs)</td>
<td>(55 fs)</td>
</tr>
<tr>
<td>2.488 GHz</td>
<td>2488 MB/s</td>
<td>5 kHz to 15 MHz</td>
<td>(191 fs)</td>
<td>(29 fs)</td>
</tr>
</tbody>
</table>

Phase modulation

Maximum deviation

<table>
<thead>
<tr>
<th>Mode</th>
<th>Maximum deviation</th>
<th>Rates (3 dB BW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESG-A and ESG-D series</td>
<td>ΦM1</td>
<td>ΦM2</td>
</tr>
<tr>
<td>Normal BW</td>
<td>N x 90 radians</td>
<td>dc to 100 kHz</td>
</tr>
<tr>
<td>High BW</td>
<td>N x 8π radians</td>
<td>dc to 1 MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESG-AP and ESG-DP series</th>
<th>Normal BW</th>
<th>High BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>N x 10 rad</td>
<td>dc to 1 kHz</td>
<td>dc to 1 MHz</td>
</tr>
</tbody>
</table>

Deviation accuracy

<±(5% of deviation + 0.01 radians)

(1 kHz rate, Normal BW mode)

Distortion

<1%

(1 kHz rate, THD, dev < N x 90 rad (dev < N x 10 rad for ESG-AP and ESG-DP series), Normal BW mode)

External inputs

Ext 1 or Ext 2

Sensitivity

1 Vpeak for indicated deviation

Input impedance

50 Ω, nominal

Paths

FM 1 and FM 2 are summed internally for composite modulation. Either path may be switched to any one of the modulation sources: Int, Ext 1, Ext 2. The FM 2 path is limited to a maximum rate of 1 MHz. The FM 2 path must be set to a deviation less than FM 1.

1. Parentheses denote typical performance.
2. Calculated from phase noise performance in CW mode only at +2.0 dBm for standard instruments, +5.0 dBm with Option UNB, and –1.0 dBm with Option H99.
3. For other frequencies, data rates, or bandwidths, please contact your sales representative.
4. Since the internal modulation source operates over 0.1 Hz to 50 kHz, FM rates above 50 kHz must be supplied externally.
5. Refer to frequency bands on page 4 to compute specifications.
6. At the calibrated deviation and carrier frequency, within 5 °C of ambient temperature at time of calibration.
Amplitude modulation *(fc > 500 kHz)*

<table>
<thead>
<tr>
<th>Range</th>
<th>0 to 100% (envelope peak ≤ maximum specified power)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>0.1%</td>
</tr>
<tr>
<td>Rates (3 dB bandwidth)</td>
<td>dc/10 Hz to 10 kHz</td>
</tr>
<tr>
<td>Accuracy (1 kHz rate)</td>
<td>< ± (6% of setting + 1%)1</td>
</tr>
<tr>
<td>Distortion (1 kHz rate, THD)</td>
<td>30% AM <1.5%</td>
</tr>
<tr>
<td></td>
<td>90% AM <4%, typical</td>
</tr>
<tr>
<td>External inputs</td>
<td>Ext 1 or Ext 2</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>1 V peak for indicated depth</td>
</tr>
<tr>
<td>Input impedance</td>
<td>50 Ω, nominal</td>
</tr>
</tbody>
</table>

Paths AM 1 and AM 2 are summed internally for composite modulation. Either path may be switched to any one of the modulation sources: Int, Ext 1, Ext 2.

Wideband AM (ESG-DP and ESG-D series only)

<table>
<thead>
<tr>
<th>Rate (1 dB bandwidth, typical)</th>
<th>400 Hz to 10 MHz ALC On 400 Hz to 10 MHz ALC Off</th>
<th>dc to 10 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>External input</td>
<td>1 input</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.5 V = 100%</td>
<td></td>
</tr>
<tr>
<td>Input impedance</td>
<td>50 Ω, nominal</td>
<td></td>
</tr>
</tbody>
</table>

Pulse modulation

<table>
<thead>
<tr>
<th>On/off ratio</th>
<th>≤3 GHz</th>
<th>>3 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>80 dB</td>
<td>>60 dB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rise/fall times</th>
<th>150 ns, typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum width</td>
<td>2 μs, typical</td>
</tr>
<tr>
<td>ALC On</td>
<td></td>
</tr>
<tr>
<td>ALC Off</td>
<td>0.4 μs, typical</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pulse repetition frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALC On</td>
</tr>
<tr>
<td>ALC Off</td>
</tr>
<tr>
<td>dc to 1.0 MHz, typical</td>
</tr>
<tr>
<td>10 Hz to 250 kHz, typical</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤±0.5 dB, typical ≤3 GHz</td>
</tr>
<tr>
<td>≤±0.8 dB, typical ≤4 GHz (relative to CW)²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External input</th>
<th>Ext 2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Input voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF on</td>
</tr>
<tr>
<td>RF off</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Internal pulse generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square wave rate</td>
</tr>
<tr>
<td>Period</td>
</tr>
<tr>
<td>Width</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
<tr>
<td>0.1 Hz to 50 kHz</td>
</tr>
<tr>
<td>16 μs to 30 sec</td>
</tr>
<tr>
<td>8 μs to 30 sec</td>
</tr>
<tr>
<td>4 μs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High-performance pulse modulation (Option 1E6, ESG-AP and ESG-A series)³</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>On/off ratio</th>
<th>≤2 GHz</th>
<th>>2 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>80 dB</td>
<td>>70 dB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rise/fall times</th>
<th><10 ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td><60 ns, typical</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External input</th>
<th>Pulse in</th>
</tr>
</thead>
</table>

| Input voltage | +5 V (with RF on, TTL compatible) |

Input impedance

1. AM is typical above 2 GHz or if wideband AM or IQ modulation is simultaneously enabled.
2. With ALC off, specifications apply after the execution of power search. With ALC on, specifications apply for pulse repetition rates ≤10 kHz and pulse widths ≥5µs.
3. With high performance pulse modulation (Option 1E6) installed, all maximum power specifications drop by 4 dB.
Internal modulation source

(Provides FM, ΦM, and AM modulation signals and LF out)

Waveforms
- sine, square, ramp, triangle, pulse, noise

Rate range
- Sine: 0.1 Hz to 50 kHz
- Square, ramp, triangle: 0.1 Hz to 10 kHz

Resolution
- 0.1 Hz
- Pulse only: 4 µs

Frequency accuracy
- 0.005%, typical

Swept sine mode (frequency, phase continuous)
- Operating modes: Triggered or continuous sweeps
- Frequency range: 0.1 Hz to 50 kHz
- Sweep time: 1 ms to 65 sec
- Resolution: 1 ms

Dual sinewave mode
- Frequency range: 0.1 Hz to 50 kHz
- Amplitude ratio: 0 to 100%
- Amplitude ratio resolution: 0.1%

LF out (internal modulation source)
- Amplitude: 0 to 3 V peak into 50 Ω
- Output impedance: <1 Ω

External modulation inputs

Modulation types
- Ext 1: FM, ΦM, AM, and burst envelope
- Ext 2: FM, ΦM, AM, and pulse

High/Low Indicator (100 Hz to 10 MHz BW, AC coupled inputs only) Activated when input level error exceeds 3% (nominal)

Simultaneous modulation

All modulation types may be simultaneously enabled, except: FM with FM; AM with burst envelope; Wideband AM with I/Q. AM, FM, and FM can sum simultaneous inputs from any two sources (INT, EXT 1, and EXT 2.) Any given source (INT, EXT 1, or EXT 2) may only be routed to one activated modulation type.
Specifications for digital models only

Level accuracy with digital modulation
(ESG-DP and ESG-D series only)
With ALC On; relative to CW; with PRBS modulated data;
if using I/Q inputs, $\sqrt{I^2 + Q^2} = 0.5 \, V_{rms}$, nominal)1

$\pi/4$ DQPSK or QPSK formats

<table>
<thead>
<tr>
<th>ESG-D series</th>
<th>ESG-DP series</th>
</tr>
</thead>
<tbody>
<tr>
<td>±0.20 dB</td>
<td>±0.20 dB</td>
</tr>
<tr>
<td>±0.30 dB</td>
<td>±0.30 dB</td>
</tr>
</tbody>
</table>

(Relative to CW; with raised cosine or root-raised cosine filter and
$\alpha \geq 0.35$; with 10 kHz ≤ symbol rate ≤ 1 MHz; at RF freq ≥25 MHz;
power ≤ max specified −3 dB or −6 dB with Option UNB)

Constant amplitude formats (FSK, GMSK, etc)

<table>
<thead>
<tr>
<th>ESG-D series</th>
<th>ESG-DP series</th>
</tr>
</thead>
<tbody>
<tr>
<td>No degradation</td>
<td>±0.10 dB</td>
</tr>
</tbody>
</table>

Level accuracy with ALC off2 ±0.3 dB, typical
(After power search is executed; relative to CW level accuracy with
ALC on; with burst off; if external I/Q is enabled $\sqrt{I^2 + Q^2} = 0.5 \, V_{rms}$)

I/Q modulation
(ESG-DP and ESG-D series only)

I/Q inputs
Input impedance 50 Ω
Full scale input1 $\sqrt{I^2 + Q^2} = 0.5 \, V_{rms}$

Adjustments/Impairments (nominal)
DC offset (I and Q independently adjustable) ±100%
I/Q gain ratio ±4 dB
I/Q quadrature ±10° (for fc ≤ 3.3 GHz)

External burst envelope
(ESG-DP and ESG-D series only)

Input voltage
RF On	0 V
RF Off	−1.0 V
Linear control range	0 to −1 V

On/off ratio

≤3 GHz	>75 dB
>3 GHz	>60 dB
V_{in}	≤−1.05 V

Rise/fall time <2 µs with rectangular input, typical

Minimum burst repetition frequency

| ALC on | 10 Hz, typical |
| ALC off | dc |

External input Ext 1

Input impedance 50 Ω, nominal

Coherent carrier out3
(ESG-DP and ESG-D series only)

Range 250 MHz to maximum carrier frequency
Level 0 dBm ±5 dB, typical
Impedance 50 Ω

Typical I/Q frequency response

1. The optimum I/Q input level is $\sqrt{I^2 + Q^2} = 0.5 \, V_{rms}$. I/Q drive level affects EVM, origin offset, spectral regrowth, and noise floor. Typically, level accuracy with ALC on will be maintained with drive levels between 0.25 and 1.0 V_{rms}.
2. When applying external I/Q signals with ALC off, output level will vary directly with I/Q input level. Power search is an internal calibration routine used to set output power when ALC is off. The routine disables all modulation inputs, adjusts output power while applying 0.5 V_{rms} to the I/Q modulator then enables modulation.
3. Coherent carrier is modulated by FM or ΦM when enabled.
I/Q baseband generator

(Option UN8, ESG-DP and ESG-D series only)

Modulation

PSK
- BPSK, QPSK, OQPSK, π/4DQPSK, 8PSK, 16PSK, 64PSK

MSK
- User-defined phase offset from 0 to 100°

QAM
- 4, 16, 32, 64, 256

FSK
- Selectable: 2, 4, 8, 16 level symmetric
- Custom: Custom map of up to 16 deviation levels

Deviation
- Modulation index ≤1, ≤1.5 Msym/sec
- Modulation index ≤0.5, ≤2.0 Msym/sec

Resolution
- 0.1 Hz

I/Q
- Custom map of 16 unique values for I and Q

Filter

Selectable
- Nyquist, root Nyquist, Gaussian, rectangular
 - α: 0 to 1, BbT: 0.1 to 1

Custom FIR
- 256 coefficients, 16-bit resolution, 16 symbols long, automatically scaled

Symbol rate

For external data or internal PN sequences in pattern mode, symbol rate is adjustable from 200 symbols/sec to maximum listed in table.

<table>
<thead>
<tr>
<th>Bits/symbol</th>
<th>Maximum symbol rate (Msym/sec)</th>
<th>Maximum data rate (Mbits/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>2</td>
<td>12.5</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>8.33</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>12.5</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>8.33</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>7.14</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>6.25</td>
<td>50</td>
</tr>
</tbody>
</table>

For all other data types and data structures the maximum bit rate is 5 Mbits/sec.

TDMA data structure

Frames and timeslots may be configured as different types of traffic or control channels. The data field of a timeslot can accept a user file, PRBS (PN9 or PN15), or external data. Maximum bit rate is 5 Mbits/sec.

Reference frequency

Internal or external 1, 2, 5, 10 MHz reference

Data clock can be locked to an external 13 MHz (GSM) reference

1. PN15 is not continuous in bursted mode when TETRA is operated in a downlink mode.
2. Baseband I/Q outputs cannot be scaled for GSM and DECT.
3. Specifications apply for the frequency range, symbol Nyquist filter, filter factors, and default scaling factor specified for each standard.
4. Baseband I/Q outputs cannot be scaled for FSK and MSK.
5. Filter factor (a or BbT) is set to 0.5.
I/Q baseband generator (continued)

Digital communications standards

<table>
<thead>
<tr>
<th>Error vector magnitude<sup>1</sup> (% rms)</th>
<th>NADC<sup>5</sup></th>
<th>PDC</th>
<th>PHS</th>
<th>TETRA</th>
<th>DECT</th>
<th>GSM (DCS, PCS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low EVM mode</td>
<td>Continuous Burst</td>
<td>Continuous Burst</td>
<td>Continuous Burst</td>
<td>Continuous Burst</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Low EVM mode (typical)</td>
<td>0.7</td>
<td>1.4</td>
<td>0.9</td>
<td>1.3</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Low EVM mode (typical)</td>
<td>0.4</td>
<td>1.1</td>
<td>0.6</td>
<td>0.9</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Low ACP mode (typical)</td>
<td>1.0</td>
<td>1.4</td>
<td>0.8</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Global phase error¹ (rms/pk)	N/A	N/A	N/A	N/A	N/A	0.6°/2.2°
Deviation accuracy¹ (kHz)	N/A	N/A	N/A	N/A	3 (2, typ)	N/A
Channel spacing (kHz)	30	25	300	25	1,728	200

Adjacent channel power¹ (ACP)	Continuous Burst	Continuous Burst	Continuous Burst	Continuous Burst	N/A	Continuous Burst
Low ACP Mode, dBC, typical						
at adjacent channel²	−35	−34	−	−	−66⁴	−63
at 1st alternate channel³	−79	−77	−70	−70	−80	−78
at 2nd alternate channel³	−82	−80	−80	−79	−81	−80
at 3rd alternate channel³	−83	−82	−81	−79	−81	−80

| Supported burst types | Custom, up/down TCH | Custom, up/down TCH, up Vox | Custom, TCH, sync | Custom, up control 1 & 2 | Custom, dummy B 1 & 2, traffic B, low capacity | Custom, normal, FCorr, sync, dummy, access |
| Scramble capabilities | Yes | Yes | | | | |

1. Specifications apply for the symbol rates, root raised cosine filter, filter factors (a or BbT) and default scaling factor specified for each standard, and at power levels ≤7 dBm (≤10 dBm, Option UNB).
2. ACP for TETRA is measured over a 25 kHz bandwidth, with an 18 kHz root raised cosine filter applied at power levels ≤4 dBm (≤8 dBm, Option UNB).
3. The “channel spacing” determines the offset size of the adjacent and alternate channels: Adjacent channel offset = 1 x channel spacing.
4. TETRA ACP performance is typically <−69 dBc with Option H99 in continuous modulation mode.
5. Supports IS-54 and IS-136 traffic channels only.
Digital communications standards

- **NADC spectrum**
 - $F_c = 849\, \text{MHz}$
 - Span = 0.3 MHz
 - Scale = 10 dB/div
 - Level = +4 dBm

- **PHS spectrum**
 - $F_c = 1907\, \text{MHz}$
 - Span = 2 MHz
 - Scale = 10 dB/div
 - Level = +4 dBm

- **DECT spectrum**
 - $F_c = 1800\, \text{MHz}$
 - Span = 7 MHz
 - Scale = 10 dB/div
 - Level = +4 dBm

- **PDC spectrum**
 - $F_c = 810\, \text{MHz}$
 - Span = 0.25 MHz
 - Scale = 10 dB/div
 - Level = +4 dBm

- **TETRA spectrum**
 - $F_c = 400\, \text{MHz}$
 - Span = 0.25 MHz
 - Scale = 10 dB/div
 - Level = +4 dBm

- **GSM spectrum**
 - $F_c = 920\, \text{MHz}$
 - Span = 2 MHz
 - Scale = 10 dB/div
 - Level = +4 dBm
I/Q baseband generator (continued)

Custom digitally modulated signals

<table>
<thead>
<tr>
<th>Modulation</th>
<th>QPSK</th>
<th>π/4DQPSK</th>
<th>16QAM</th>
<th>2FSK</th>
<th>GMSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter factor (α or BbT)</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Modulation index</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.5</td>
<td>N/A</td>
</tr>
<tr>
<td>Symbol rate (Msym/s)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Error vector magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(%) rms</td>
<td>(0.9)</td>
<td>(0.9)</td>
<td>(0.8)</td>
<td>(0.7)</td>
<td>(0.2)</td>
</tr>
<tr>
<td>Shift error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(%) rms</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(0.7)</td>
<td>(0.2)</td>
</tr>
<tr>
<td>Global phase error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(degrees rms)</td>
<td>(1.5)</td>
<td>(1.5)</td>
<td>(1.4)</td>
<td>(0.8)</td>
<td>(0.4)</td>
</tr>
<tr>
<td></td>
<td>(2.8)</td>
<td>(2.6)</td>
<td>(3.5)</td>
<td>(1.0)</td>
<td>(0.5)</td>
</tr>
</tbody>
</table>

Typical performance (power levels ≤ +4 dBm [≤ +8 dBm, Option UNB])

PSK formats

Baseband EVM performance versus symbol rate
(root Nyquist filter, modulation = QPSK)

RF EVM performance versus frequency
(root Nyquist filter, a = 0.25, ALC = off, modulation = π/4DQPSK)

RF EVM performance versus symbol rate
(fc = 1 GHz, root Nyquist filter, ALC = off, modulation = QPSK)

Effects of automatic level control (ALC) on EVM performance
(fc = 1 GHz, root Nyquist filter, a = 0.25, modulation = QPSK)

1. Specifications apply at power levels ≤ +4 dBm, Option (UNB) with default scale factor of I/Q outputs.
2. Parentheses denote typical performance.
I/Q baseband generator (continued)

Non-constant amplitude formats

RF EVM performance versus symbol rate
(fc = 1 GHz, root Nyquist filter, a = 0.25)

FSK formats

Shift error versus symbol rate
(fc = 1 GHz, Gaussian filter, BbT = 0.5, modulation index = 0.5)

Phase error versus symbol rate
(fc = 1 GHz, Gaussian filter)

Shift error versus frequency
(Gaussian filter, BbT = 0.5, modulation index = 0.5, symbol rate = 1Msys/s)

Phase error versus frequency
(Gaussian filter, BbT = 0.5, symbol rate = 1Msys/s)

MSK formats

Phase error versus symbol rate
(fc = 1 GHz, Gaussian filter)
Dual arbitrary waveform generator

(Option UND, ESG-DP and ESG-D series only)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of channels</td>
<td>2</td>
</tr>
<tr>
<td>Resolution</td>
<td>14 bits (1/16384)</td>
</tr>
<tr>
<td>Waveform memory</td>
<td></td>
</tr>
<tr>
<td>Length (playback)</td>
<td>1 Megasample/channel</td>
</tr>
<tr>
<td>Length (storage)</td>
<td>1 Megasample/channel in non-volatile RAM</td>
</tr>
<tr>
<td>Waveform segments</td>
<td></td>
</tr>
<tr>
<td>Segment length</td>
<td>16 samples to 1 Megasample</td>
</tr>
<tr>
<td>Number of segments</td>
<td>1 to 128 (even number of samples)</td>
</tr>
<tr>
<td>Waveform sequences</td>
<td></td>
</tr>
<tr>
<td>Sequencing</td>
<td>Continuously repeating</td>
</tr>
<tr>
<td>Number of sequences</td>
<td>1 to 128</td>
</tr>
<tr>
<td>Segments/sequence</td>
<td>1 to 65,535</td>
</tr>
<tr>
<td>Segment repetitions</td>
<td>1 to 4,095</td>
</tr>
<tr>
<td>Clock</td>
<td></td>
</tr>
<tr>
<td>Sample rate</td>
<td>1 Hz to 40 MHz</td>
</tr>
<tr>
<td>Resolution</td>
<td>1 Hz</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Same as timebase</td>
</tr>
<tr>
<td>Output reconstruction filters</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Elliptic</td>
</tr>
<tr>
<td>Frequency cutoff (nominal, 3 dB)</td>
<td>250 kHz, 2.5 MHz, 8 MHz, and through (user-supplied external filter)</td>
</tr>
<tr>
<td>Baseband spectral purity</td>
<td></td>
</tr>
<tr>
<td>(typical, full scale sinewave, >20 x oversampling)</td>
<td></td>
</tr>
<tr>
<td>Harmonic distortion ≤100 kHz</td>
<td><−80 dB</td>
</tr>
<tr>
<td>100 kHz to 2 MHz</td>
<td><−65 dB</td>
</tr>
<tr>
<td>Non-harmonic spurious</td>
<td><−80 dB</td>
</tr>
<tr>
<td>(spur frequencies ≤10 MHz)</td>
<td></td>
</tr>
<tr>
<td>Phase noise</td>
<td><−120 dBc/Hz</td>
</tr>
<tr>
<td>(baseband output of 1 MHz sinewave at 20 kHz offset)</td>
<td></td>
</tr>
<tr>
<td>IM performance</td>
<td><−69 dB</td>
</tr>
<tr>
<td>(two sinewaves at 950 kHz and 1050 kHz at baseband, full scale)</td>
<td></td>
</tr>
<tr>
<td>Triggers</td>
<td></td>
</tr>
<tr>
<td>Types</td>
<td>Continuous, single, gated, segment advance</td>
</tr>
<tr>
<td>Source</td>
<td>Trigger key, bus, external</td>
</tr>
<tr>
<td>External polarity</td>
<td>Negative, positive</td>
</tr>
<tr>
<td>External delay time</td>
<td>2 µs to 3.6 ksec</td>
</tr>
<tr>
<td>Markers</td>
<td></td>
</tr>
<tr>
<td>(Markers are defined in a segment during the waveform generation process, or from the ESG front panel. A marker can also be tied to the RF blanking feature of the ESG.)</td>
<td></td>
</tr>
<tr>
<td>Marker polarity</td>
<td>Negative, positive</td>
</tr>
<tr>
<td>Bluetooth (UND)</td>
<td></td>
</tr>
<tr>
<td>Packet type</td>
<td>DH1</td>
</tr>
<tr>
<td>Select</td>
<td></td>
</tr>
<tr>
<td>Bluetooth device address</td>
<td>BD_ADDR 12 Hex digits</td>
</tr>
<tr>
<td>Active member address</td>
<td>AM_ADDR 0 to 7</td>
</tr>
<tr>
<td>Payload data</td>
<td>8-bit repeating pattern</td>
</tr>
<tr>
<td>Truncated PN9</td>
<td>Continuous PN9</td>
</tr>
<tr>
<td>Impairments</td>
<td></td>
</tr>
<tr>
<td>Frequency offset</td>
<td>−100 kHz to +100 kHz</td>
</tr>
<tr>
<td>Resolution</td>
<td>1 kHz</td>
</tr>
<tr>
<td>Frequency drift/packet</td>
<td>−100 kHz to +100 kHz</td>
</tr>
<tr>
<td>Linear or Sinusoidal</td>
<td>Resolution</td>
</tr>
<tr>
<td>Resolution</td>
<td>1 kHz</td>
</tr>
<tr>
<td>Modulation index</td>
<td>0.250 to 0.400</td>
</tr>
<tr>
<td>Symbol timing error</td>
<td>.001</td>
</tr>
<tr>
<td>Resolution</td>
<td>−50 ppm to 50 ppm</td>
</tr>
<tr>
<td>AWGN with adjustable C/N</td>
<td>Resolution</td>
</tr>
<tr>
<td>Resolution</td>
<td>−10 dB to −40 dB</td>
</tr>
<tr>
<td>Burst</td>
<td>1 db</td>
</tr>
<tr>
<td>Resolution</td>
<td>1 to 10 #symbol/ramp</td>
</tr>
<tr>
<td>Clock/gate delay</td>
<td>1 symbol/ramp</td>
</tr>
<tr>
<td>Resolution</td>
<td>0 to 24999.9 symbols</td>
</tr>
<tr>
<td>Other formats (UND)</td>
<td></td>
</tr>
<tr>
<td>NADC, PDC, PHS, GSM, DECT, TETRA, APCO25, CDPD, PWT, EDGE and custom</td>
<td></td>
</tr>
<tr>
<td>Multicarrier</td>
<td></td>
</tr>
<tr>
<td>Number of carriers</td>
<td>Up to 64 (limited by a max bandwidth of 15 MHz)</td>
</tr>
<tr>
<td>Frequency offset (per carrier)</td>
<td>−7.5 MHz to +7.5 MHz</td>
</tr>
<tr>
<td>Power offset (per carrier)</td>
<td>0 dB to −40 dB</td>
</tr>
<tr>
<td>Modulation</td>
<td>PSK</td>
</tr>
<tr>
<td>BPSK, QPSK, OQPSK, π/4</td>
<td></td>
</tr>
<tr>
<td>DQPSK, 8PSK, 16PSK</td>
<td></td>
</tr>
<tr>
<td>QAM</td>
<td>4, 16, 32, 64, 256</td>
</tr>
<tr>
<td>FSK</td>
<td>Selectable: 2, 4, 8, 16</td>
</tr>
<tr>
<td>Data</td>
<td>Random ONLY</td>
</tr>
<tr>
<td>(For external data, bursting and framing refer to real-time I/Q baseband generator, Option UN8)</td>
<td></td>
</tr>
<tr>
<td>Multitone</td>
<td></td>
</tr>
<tr>
<td>Number of tones</td>
<td>2 to 64, with selectable on/off state per tone</td>
</tr>
<tr>
<td>Frequency spacing</td>
<td>100 Hz to 5 MHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Up to 16 MHz, typical</td>
</tr>
<tr>
<td>Phase (per tone)</td>
<td>0 to 360 degrees</td>
</tr>
<tr>
<td>Additive white Gaussian noise</td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>50 kHz to 15 MHz</td>
</tr>
<tr>
<td>Waveform lengths</td>
<td>16, 32, 64, 128, 256, 512, 1024 ksamples</td>
</tr>
<tr>
<td>Noise seeds</td>
<td>Fixed, random</td>
</tr>
</tbody>
</table>
Multichannel, multicarrier
CDMA personality
(Option UN5, ESG-DP and ESG-D series only)

Chip (symbol) rate
1.2288 MHz (default)
Adjustable from 1 Hz to 10 MHz with 4x oversampling

Modulation
QPSK (forward) with Walsh and short code spreading
Offset QPSK (reverse) with short code spreading of random data

Pre-defined channel configurations
(power levels per IS-97-A)
- Pilot channel: Includes IS-95 modified filter, with equalizer
- 9 channel: Includes pilot, paging, sync, 6 traffic and IS-95 modified filter, with equalizer
- 32 channel: Includes pilot, paging, sync, 29 traffic and IS-95 modified filter, with equalizer
- 64 channel: Includes pilot, 7 paging, sync, 55 traffic and IS-95 modified filter, with equalizer
- Reverse channel: Includes IS-95 filter

Rho
0.9996
(≤ 4 dBm, IS-95 filter, ≤ 2 GHz, typical)

Pilot time offset
≤ 2 µs, typical

User-defined CDMA
Channel table editor
- Number of channels: 1 to 256
- Walsh codes: 0 to 63
- Channel power: 0 to –40 dB
- PN Offset: 0 to 511
- Data: 00-FF(HEX) or random

Walsh code power selection
- IS-97 compliant
- Equal channel power
- Scaled to 0 dB
- User-defined

IS-95 filter selection
- IS-95
- IS-95 with equalizer
- IS-95 modified
- IS-95 modified with equalizer

All are IS-95 compliant. “Modified” filters reduce spurious emissions for adjacent channel power measurements.

Other FIR filters
- Nyquist, root Nyquist: α = 0 to 1
- Gaussian: B_eT = 0.1 to 1
- Custom FIR: Up to 256 coefficients
- 16-bit resolution
- Automatically scaled

Oversample ratio
Range: 2 to 8
Resolution: 1

Multicarrier
- Number of carriers: 3 or 4 (predefined), up to 12 (user-defined)
- Carrier channels: Pilot, 9 channel, 32 channel, 64 channel, reverse, custom
- Frequency offset (per carrier): ±7.5 MHz
- Offset resolution: <100 Hz
- Carrier power (per carrier): 0 dB to –40 dB

Clipping
- Clip location: Pre or post FIR filter
- Clipping type: |I+jQ|, |I| and |Q|
- Clipping range: 10% to 100%
 (clip the modulation level to a percentage of full scale. A level of 100% equates to no clipping)

1. Parentheses denote typical performance.
2. Specifications apply with high crest factor off.

Multichannel CDMA spurious emissions¹

<table>
<thead>
<tr>
<th>Channels/offsets</th>
<th>0.885 to 1.25 MHz</th>
<th>1.25 to 1.98 MHz</th>
<th>1.98 to 5 MHz²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Option UNB</td>
<td>Option H99</td>
</tr>
<tr>
<td>Reverse (at ≤ 0 dBm)</td>
<td>1.25 to 1.98 MHz</td>
<td>Option UNB</td>
<td>Option H99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Rev B)</td>
<td>(Rev B)</td>
</tr>
<tr>
<td>30 – 200 MHz</td>
<td>–66 (–72)</td>
<td>–70 (–75)</td>
<td>(–75)</td>
</tr>
<tr>
<td>700 – 1000 MHz</td>
<td>–68 (–73)</td>
<td>–72 (–76)</td>
<td>–77 (–79)</td>
</tr>
<tr>
<td>1000 – 2000 MHz</td>
<td>–63 (–66)</td>
<td>–70 (–74)</td>
<td>–76 (–79)</td>
</tr>
<tr>
<td>9/64 channels (at ≤ 2 dBm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 – 200 MHz</td>
<td>–65 (–68)</td>
<td>–68 (–71)</td>
<td>(–68)</td>
</tr>
<tr>
<td>700 – 1000 MHz</td>
<td>–64 (–70)</td>
<td>–69 (–73)</td>
<td>–69 (–75)</td>
</tr>
<tr>
<td>1000 – 2000 MHz</td>
<td>–60 (–63)</td>
<td>–67 (–71)</td>
<td>–69 (–73)</td>
</tr>
</tbody>
</table>

¹. Parentheses denote typical performance.
². Specifications apply with high crest factor off.
Bit Error Rate (BER) analyzer
(Option UN7, ESG-DP and ESG-D series only)

Clock rate
100 Hz to 10 MHz

Supported data patterns
PN9 and PN15

Resolution
10 digits (6 digits for BER (exp))

Minimum synchronization length
- 2 Mbps mode: 9 bits (PN9), 15 bits (PN15)
- 10 Mbps mode: 43 bits (PN9), 48 bits (PN15)

Bit sequence length
100 bits to 4.294 Gbits after synchronization

Features

<table>
<thead>
<tr>
<th></th>
<th>2 Mbps mode</th>
<th>10 Mbps mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-time display</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bit count</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Error-bit-count</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bit error rate</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pass/fail indication</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Valid data and clock detection</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Automatic re-synchronization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special pattern ignore</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

GSM/EDGE base station

Bit Error Rate Test (BERT)

(ESG-D series only)

(Option 300 requires Option UN8 revision C or better.
Option UNA is highly recommended. The following are required:

GSM BTS test only
E4406A VSA-series transmitter tester with Options BAH (EDGE measurement personality) and 300 Rev. A (321.4 MHz output).

GSM/EDGE BTS test
E4406A VSA-series transmitter tester with Option 202 (GSM and EDGE measurement personality) and Option 300 Rev. B (321.4 MHz output). ESG firmware Option 202, EDGE personality, is also required. To upgrade from Option 300 Rev. A to Option 300 Rev. B requires new hardware.

See configuration guide for a bundled ordering convenience.

Test technique
RF loopback

Supported systems
- GSM 400
- GSM 850
- GSM 900 (P-GSM)
- DCS 1800
- PCS 1900
- E-GSM (extended)

GSM output data
- Channel content
 - Full-rate speech (FS)
- Data
 - PN9, PN15 coded as per ETSI GSM, 05.03 version 3.6.1 (Oct 94).
- Frame structure
 - 26-frame TCH multiframe structure as per ETSI GSM, 05.01 version 6.1.1 (1998-07).
- Adjacent timeslots
 - PN9, PN15 coded as per ETSI, GSM, 05.03 version 3.6.1 (Oct 94).
- Frame structure
 - 26-frame TCH multiframe structure as per ETSI GSM, 5.01 version 6.1.1 (1998-07).

1. Perch power level is 3 dB below DPCH power.
2. DPCCH power level is 6 dB below DPDCCH power.
Measurements

Results
Class Ib bit-error ratio (RBER for TCH/FS)
Class II bit-error ratio (RBER for TCH/FS)
Frame erasure ratio (FER)
Downlink error frame count
Class Ib bit-error count
Class II bit-error count
Erased frame count
Total frame count

Maximum RBER
100%

Maximum FER
100%

Measurement modes
Static reference
Sensitivity test (BER%)
RBER at user-specified power level measured. (This is the complete conformance test as defined in ETSI 300 609-1 (GSM 11.21) version 4.12.0 (Dec 98), section 7.3.4.

BER sensitivity search
Automatically finds the input level (sensitivity) that causes a user specified RBER (normally 2%) for class II bits.

Maximum frame count
6,000,000 speech frames

EDGE/EGPRS output data
Channel content
Continuous PN9 or PN15
Sequence for raw BER
Continuous PN9 or PN15
Sequence on header and data payload.

Data
Fully coded MCS-5 and MCS-9; channel coding provided on PN9 or PN15 for data payload. Coding is done on frames 0 – 11, 13-24, 26-37, 39-50 on a 52 PDCH multiframe. The selected signal pattern is inserted continuously across the full payload.

Frame structure
52-frame multiframe structure for EDGE/EGPRS channel as per ETSI GSM 05.01 release 99.
Frames 12, 25, 38 and 51 are empty (no burst).

Adjacent timeslots
Continuous uncoded PN9, PN15 or coded MCS-5 or MCS-9 with PN9 or PN15 sequence data payload.
Note: Maximum of 4 timeslots can be turned on with EDGE/EGPRS multiframe coded data.

Measurement modes
Static reference
Sensitivity test (BER%)
Baseband BER (Bit Error Rate) tester
(Included with Option 300; cannot be ordered separately.)

Clock rate
100 Hz to 10 MHz

Supported data patterns
PN9 and PN15

Resolution
10 digits (6 digits for BER (exp))

Minimum synchronization length
2 Mbps mode
9 bits (PN9), 15 bits (PN15)
10 Mbps mode
43 bits (PN9), 48 bits (PN15)

Bit sequence length
100 bits to 4.294 Gbits after synchronization

Features

Baseband BER (Bit Error Rate) tester
(Included with Option 300; cannot be ordered separately.)

Clock rate
100 Hz to 10 MHz

Supported data patterns
PN9 and PN15

Resolution
10 digits (6 digits for BER (exp))

Minimum synchronization length
2 Mbps mode
9 bits (PN9), 15 bits (PN15)
10 Mbps mode
43 bits (PN9), 48 bits (PN15)

Bit sequence length
100 bits to 4.294 Gbits after synchronization

Features

Real-time display
2 Mbps mode
X
10 Mbps mode
X

Bit count
X

Error-bit-count
X

Bit error rate
X

Pass/fail indication
X

Valid data and clock detection
X

Automatic re-synchronization
X

Special pattern ignore
X
Multichannel Multicarrier 3GPP
W-CDMA personality
(Option 100, ESG-DP and ESG-D series only)

Chip rates
3.84 Mchips/sec ± 10%

Frame duration
10 ms

Filters

W-CDMA
$\alpha = 0.22$

Nyquist, root Nyquist
$\alpha = 0$ to 1

Gaussian
$B_0T = 0$ to 1

IS-95

IS-2000

Custom FIR
Up to 256 coefficients, 16-bit resolution

Rectangle

APCO 25 c4FM
250 kHz, 2.5 MHz

Reconstruction filters
8.0 MHz, and through

I/Q mapping
Normal, invert

Clipping

Clip location
Pre-or post-FIR filter

Clipping type
$|I+Q|$, $|I|$ and $|Q|$

Clipping range
10% to 100%
(Clip the modulation level to a percentage of full scale. A level of 100% equates to no clipping.)

Downlink

Modulation
QPSK

Pre-defined channel configurations (partially coded)

1 DPCH
3 DPCH
PCCPCH + SCH
PCCPCH + SCH + 1 DPCH
PCCPCH + SCH + 3 DPCH

Test Model 1
with 16, 32, or 64 DPCH

Test Model 2

Test Model 3
with 16 or 32 DPCH

Test Model 4

User-defined channel parameters

Symbol rates
7.5, 15, 30, 60, 120, 240, 480, or 960 ksps

Number of channels
Up to 512

Spreading code
0 to 511

Channel power
0 to $–40$ dB, 0.01 dB resolution

tDPCH offset
0 to 149

Scrambling code
0 to 511

Scramble types
Standard, left alternate, right alternate

Data pattern
Random, 00 to FF (HEX), PN9

TPC power
$–20$ to 20 dB relative to channel power

TPC value
0–5555

TFCl field
On / Off

TFCl value
0–1023

TFCl power
$–20$ to 20 dB relative to channel power

Pilot power
$–20$ to 20 dB relative to channel power

Pilot bits
4 or 8

Channel Types

(downlink)
PICH, DCNS, PCCPCH, SCCPCH, PSCH, SSCH, CPICH, DPCH

(uplink)
DPCCH, DPDCCH

Multicarrier

Number of carriers
Up to 4 (user defined, individually configurable)

Frequency offset (per carrier)
Up to ±7.5 MHz

Offset resolution
<1 Hz

Carrier power (per carrier)
0 dB to $–40$ dB

Uplink

Modulation
OCQPSK (HPSK)

Pre-defined channel configurations (partially coded)

1 DPCCH
15 kbps, spread code 0

DPCCH + 1 DPDCH
960 kbps, spread code 1

DPCCH + 2 DPDCH
960 kbps, spread code 1

DPCCH + 3 DPDCH
960 kbps, spread code 2

DPCCH + 4 DPDCH
960 kbps, spread code 2

DPCCH + 5 DPDCH
960 kbps, spread code 3

User-defined channel parameters

Symbol rates
15, 30, 60, 120, 240, 480, or 960 kbps

Number of DPDCH channels
6

Spreading code
0 to 511, symbol rate

Scrambling code
1 to 1FFFFFFFE, common for all channels

Second DPDCH orientation
1 or Q

Channel power
0 to $–60$ dB

Data pattern
Random, 00 to FF (HEX), PN9

FBI bits
0–2

Error vector magnitude

1.8 GHz < f_c < 2.2 GHz, default W-CDMA filters, 3.84 Mcps chip rate, ≤ 4 dBm, ≤ 7 dBm with Option UNB)

1 DPCH
(2.3%)

Adjacent channel power

1.8 GHz < f_c < 2.2 GHz, default W-CDMA filters, 3.84 Mcps chip rate, $\leq –2$ dBm, (\(\leq 0\) dBm with Option H99), 5 MHz offset

<table>
<thead>
<tr>
<th>Electronic attenuator (standard)</th>
<th>Mechanical attenuator (Option UNB)</th>
<th>Low ACP (Option H99 Rev B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 DPCH</td>
<td>$–58$ dB</td>
<td>$–64$ (–66 dB)</td>
</tr>
<tr>
<td>Test Model 1</td>
<td>$–50$ dB</td>
<td>$–60$ (–63 dB)</td>
</tr>
<tr>
<td>+ 64 DPCH</td>
<td>$–58$ dB</td>
<td>$–64$ (–66 dB)</td>
</tr>
</tbody>
</table>

Alternate channel power

1.8 GHz < f_c < 2.2 GHz, default W-CDMA filters, 3.84 Mcps chip rate, $\leq –2$ dBm (0 dBm with Option H99 and baseband filter ON), 10 MHz offset

| 1 DPCH | $–70$ (–72 dBc) | $–66$ (–68 dBc) |
| Test model 1 + 64 DPCH | | |

1. Parentheses denote typical performance.
2. Valid for 23 ± 5 °C.
Multichannel cdma2000 personality
(Option 101, ESG-DP and ESG-D series only)

This personality conforms to cdma2000 specification revision 8. Provides partially coded data for component test applications.

Spreading rate
1x (SR1), 3x (SR3)

IS-95 filter selection
- IS-95
- IS-95 with equalizer
- IS-95 modified
- IS-95 modified with equalizer

All are IS-95 compliant. “Modified” filters reduce spurious emissions for adjacent channel power measurements.

Other FIR filters
- Nyquist, root Nyquist
- Gaussian
- Custom FIR
- Rectangle

I/O mapping
Normal, invert

Clipping
- Clip location: Pre-or post-FIR filter
- Clipping type: |I+Q|, |I| and |Q|
- Clipping range: 10% to 100%

(clip the modulation level to a percentage of full scale. A level of 100% equates to no clipping.)

Multicarrier
Up to 12 (user defined, individually configured)

Frequency offset
(per carrier) –7.5 MHz to +7.5 MHz

Power offset
0 dB to –40 dB

Forward link
Spreading type
Direct spread (DS), multicarrier

Pre-defined channel configurations (partially coded)
- Pilot channel, DS/SR1
- Pilot channel, DS/SR3
- Pilot channel, Multicarrier/SR3
- 9 channel, DS/SR1

Reverse link
Spreading type
Direct spread only

Pre-defined channel configurations (partially coded)
- Pilot channel, SR1
- Pilot channel, SR3

User-defined cdma2000 Channel types
- Pilot, paging (SR1 only), sync, fundamental, and supplemental
- Pilot at Walsh 0

Radio configuration
SR1: 1 to 5
SR3: 6 to 9

Data rate
1.2 kbps to 1036.8 kbps, depends on the selected radio configuration

Walsh code
Pilot and sync have fixed codes, Walsh 0 and 32. Other channels have codes selected from specific ranges depending on the radio configuration chosen

Channel power
0 to –40 dB

PN offsets
0 to 511

Data pattern
00-FF(HEX) or random

EVM
<2.1%

(825 to 2100 MHz, SR3 pilot, IS-95 filter, which is optimized for EVM, typical)
Multichannel cdma2000 spurious emissions

(dBc, with high crest factor on IS95 modified with equalizer filter and amplitude = ≤0 dBm)

<table>
<thead>
<tr>
<th>Channels/offsets</th>
<th>2.135 to 2.50 MHz</th>
<th>Offsets from center of carrier</th>
<th>3.23 to 10 MHz2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Option H99</td>
<td>Standard</td>
</tr>
<tr>
<td>Forward 9 channel, SR3/multicarrier3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 – 200 MHz</td>
<td>(−68)</td>
<td>(−68)</td>
<td>(−66)</td>
</tr>
<tr>
<td>700 – 1000 MHz</td>
<td>(−69)</td>
<td>(−73)</td>
<td>(−68)</td>
</tr>
<tr>
<td>1000 – 2000 MHz</td>
<td>(−61)</td>
<td>(−73)</td>
<td>(−61)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channels/offsets</th>
<th>2.655 to 3.75 MHz</th>
<th>Offsets from center of carrier</th>
<th>5.94 to 10 MHz2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Option H99</td>
<td>Standard</td>
</tr>
<tr>
<td>Forward 9 channel, SR3/DS4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 – 200 MHz</td>
<td>(−75)</td>
<td>(−74)</td>
<td>(−76)</td>
</tr>
<tr>
<td>700 – 1000 MHz</td>
<td>(−76)</td>
<td>(−79)</td>
<td>(−78)</td>
</tr>
<tr>
<td>1000 – 2000 MHz</td>
<td>(−68)</td>
<td>(−79)</td>
<td>(−72)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channels/offsets</th>
<th>3.75 to 5.94 MHz</th>
<th>Offsets from center of carrier</th>
<th>5.94 to 10 MHz2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Option H99</td>
<td>Standard</td>
</tr>
<tr>
<td>Reverse 5 channel, SR3/DS5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 – 200 MHz</td>
<td>(−77)</td>
<td>(−77)</td>
<td>(−77)</td>
</tr>
<tr>
<td>700 – 1000 MHz</td>
<td>(−77)</td>
<td>(−80)</td>
<td>(−78)</td>
</tr>
<tr>
<td>1000 – 2000 MHz</td>
<td>(−71)</td>
<td>(−81)</td>
<td>(−72)</td>
</tr>
</tbody>
</table>

1. Parentheses denote typical performance.
2. Excluding 10 MHz reference clock spur (≤−67 dBc, typical).
3. Measurements performed with 30 kHz bandwidth relative to power in one carrier.
4. Measurements performed with 30 kHz bandwidth relative to total power.
Real-time 3GPP1 W-CDMA personality
(Option 200, ESG-DP and ESG-D series only)

Description
Option 200 W-CDMA personality adds a flexible solution for W-CDMA mobile and base station test to Agilent ESG-D and ESG-DP (high spectral purity) series RF signal generators. Signals are fully coded in both forward and reverse links to provide complete testing of receivers.

Channel types generated
Primary Synchronization (PSCH), Secondary Synchronization (SSCH), Primary Common Control (P-CCPCH), Common Pilot (CPICH), Dedicated Physical (DPCH), Page Indication (PICH), Orthogonal Channel Noise Source (OCNS), Dedicated Physical Control Channel (DPCCH), Dedicated Physical Data Channel (DPDCH)

BTS setup

<table>
<thead>
<tr>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root Nyquist, Nyquist</td>
<td>a = 0 to 1</td>
</tr>
<tr>
<td>Gaussian</td>
<td>B_a T = 0 to 1</td>
</tr>
<tr>
<td>User defined FIR</td>
<td>Up to 256 coefficients, 16-bit resolution</td>
</tr>
</tbody>
</table>

Chip rate
1 kcps to 4.25 Mcps

Primary scramble code
0 to 511

Downlink channel configurations
(Up to 4 channels can be configured simultaneously. With a two ESG setup, an additional four channels may be configured.)

PSCH
- **Power** -40 to 0 dB

SSCH
- **Power** -40 to 0 dB
- **Scramble code group** 0 to 63 (coupled to primary scramble code)

P-CCPCH
- **Power** -40 to 0 dB
- **OVSF** 0 to 255
- **Transport channel** BCH coding
- **Data field** PN9, PN15, 4-bit repeating pattern, user file

CPICH
- **Power** -40 to 0 dB

DPCH
- **Reference measurement channels**
 - Transport layer (DCH) control
- **Transmit channel (DCH)**
 - (Up to 6 DCH’s for each DPCH)
 - block size, Transport Time Interval (TTI), rate matching, CRC size, transport channel number
 - **Data Coding**
 - none, convolutional 1/2, convolutional 1/3, turbo

Physical layer control
- **Power** -40 to 0 dB
- **Symbol rate** 7.5, 15, 30, 60, 120, 240, 480, 960 Kbps
- **OVSF** 0 to 511 (dependent on channel symbol rate)
- **Slot format** 0 to 16 (dependent on channel symbol rate)
- **TFCI pattern** 10-bit user defined input pattern (converted to 30-bit code word with Reed-Mueller coding)
- **TPC pattern** Ramp up/down N number of times (N = 1 to 80), all up, all down
- **\tau_DPCH offset** 0 to 149
- **Secondary scramble code offset** 0 to 15
- **Data** PN9, PN15, 4-bit repeating pattern, user file, transport channel

PICH
- **Power** -40 to 0 dB
- **OVSF** 0 to 511
- **Data** PN9, PN15, user file, 4-bit repeating pattern

OCNS
- **Power** -40 to 0 dB
- **Symbol rate** 7.5, 15, 30, 60, 120, 240, 480, 960 Kbps
- **OVSF** 0 to 511 (dependent on channel symbol rate)
- **Data** PN9, PN15
- **Secondary scramble code offset** 0 to 15

1 Supports R99 December 2000 3GPP W-CDMA standard.
User equipment (UE) setup

FIR filter
- Root Nyquist, Nyquist Gaussian: a=0 to 1
- BBT= 0 to 1

Chip rate
- 1 kcps to 4.25 Mcps

Primary scrambling code
- 0 to 16777215

Secondary scrambling offset
- 0 to 15

Uplink synchronization signal setup
- Timing offset range: Timing offset 512 to 2560 chips
- Slot delay 0 to 119 slots
- Synchronization signal: System Frame Number (SFN) reset or frame clock
- Frame clock interval: 10 ms, 20 ms, 40 ms, 80 ms
- Frame clock polarity: Positive, negative
- SFN RST polarity: Positive, negative
- Sync trigger mode: Single, continuous
- BBG data clock (chip clock) setup: internal, external
- External clock rate: x 1 (3.84 MHz), x 2 (7.68 MHz), x 4 (15.36 MHz)
- External clock polarity: Positive, negative

Uplink channel configurations
- Pre-set channel type
 - Reference measurement channel: 12.2 kbps, 64 kbps, 144 kbps, 384 kbps
 - UDI 64 k
 - AMR 12.2 k

User defined channels
- One DPCCH, one DPDCH, up to 6 transport channels

DPDCH (Dedicated Physical Data Channel)
- Power: Off, -40 to 0 dB
- Beta: 0 to 15 (coupled to power)
- Channel code: 0 to 255 (maximum value depends on symbol rate/slot format)
- Data: PN9, PN15, 4-bit repeating pattern, user file, transport channel
- Symbol rate: 15, 30, 60, 120, 240, 480, 960 kbps depending on slot format
- Slot format: 0 to 6

Transport channel setup
- Block size: 0 to 5000
- Number of blocks: 0 to 4095
- Coding: 1/2 convolutional, 1/3 convolutional, turbo, none
- TTI: 10 ms, 20 ms, 40 ms, and 80 mSec
- Data: PN9, 4-bit repeating pattern, user file
- Rate matching attributes: 1 to 256
- CRC size: 0, 8, 12, 16, 24
- Error insertion: BLER or BER, or none
- BLER (Block Error Rate): 0 to 1 (resolution 0.001)
- BER (Bit Error Rate): 0 to 1 (resolution 0.0001)
- Bits frame: Automatically calculated

Input
- Synchronization signal (SFN RST or frame clock): Pattern trigger in BBG data clock (chip clock): data clock in

Output
- Chip clock out (3.84 MHz): Data clock out
- Frame timing out: system sync out
- DPDCH (I) symbol data: event1 out
- DPDCH (I) symbol clock: event2 out
- DPCCH (Q) symbol data: data out
Real-time cdma2000 personality
(Option 201, ESG-DP and ESG-D series only)

Description
Option 201, cdma2000 personality, adds a flexible solution for cdma2000 mobile and base station test to Agilent Technologies ESG-D and ESG-DP (high spectral purity) series RF signal generators. Option 201 is a firmware personality that requires Option UN8, (hardware revision C or greater), real-time baseband generator to be installed in the ESG. The fully coded nature of this solution in both forward and reverse mode supports long and short codes, cyclic redundancy checks, convolutional or turbo encoding, interleaving, power control, and complex scrambling. Additional capabilities allow flexible channel configurations with individually adjustable power levels and data rates, customizable user data, and variable chip rates. The option is backwards compatible with IS–95A, in both the base station and mobile simulation modes, through support of radio configuration 1 and 2.

Global controls across all channels
Channel power 0 to –40 dB
I/Q voltage scale 0 to –40 dB

Forward channel configurations
Channel types generated
Up to four channels simultaneously, of any of the following
- Pilot
- Paging
- Sync
- F-Fundamental
- F-Supplemental
- OCNS

BNC MUX outputs
Event 1 Delayed even second, 20 ms trig delay, 80 ms trig delay, offset 80 ms trig, 25 ms clock, page enable sync, offset 80 ms sync
Data out PC ramp, Yi FFCH, Yq FFCH, FPCH W, Sync W, FPCH X, 25 ms clock
Data clock out Chip clock, 19.2 clock, 38.4 clock, offset 80 ms trig, forward channel clock, forward channel I clock, forward channel Q clock
Symbol sync out Even second, FPCH page, page sync, FFCH page, 20 ms trig delay, FFCH frame sync, PN sync

BTS setup
Filter Root Nyquist, Nyquist, Gaussian, IS-95, IS-95 w/ EQ, IS-95 MOD, IS-95 MOD w/ EQ, rectangle, APCO 25 C4FM, user file
Spread rate 1
PN offset 0-511
Chip rate 50 cps-1.3 Mcps
Even second delay 0.5 to 128 chips
Long code state 0 to 3FFFFFFFF

Pilot channel
Walsh 0 (non-adjustable)

Sync channel
Walsh 0 to 63
Data Free editing of the following fields: SID, NID, F-synch type, Sys_Time, PRAT, LTM_Off, Msg_Type, P_REV, MIN_P_REV, LP_SEC, DAYLT, CDMA Freq, ext CDMA freq, and Reserved

Paging channel
Walsh 0 to 63
Data Default paging message or userfile
Long code mask 0-3FFFFFFFFh
Rate 4.8 or 9.6 kbps

Fundamental channel
Radio configuration 1 to 5
Walsh 0 to 63
Data rate 1.2 to 14.4 kbps, depending on radio configuration
Data PN9, PN15, userfile, external serial data, or predefined bit patterns
Long code mask 0-3FFFFFFFFh
Power control N up/down, "N" may be set from 1 to 80
Power puncture On/off
Frame offset 0 (non-adjustable)
Frame length 20 ms (non-adjustable)

Supplemental channel
Same channel configuration as fundamental, except:
Radio configuration 3 to 5
Walsh 0-63, depending on RC and data rate
Data rate 19.2 to 307.2 kbps, depending on radio configuration
Turbo coding May be selected for data rates from 28.8 to 153.6 kbps
Power control Not provided
Power puncture Not provided

OCNS channel
Walsh 0 to 63

Inputs
External data Can be selected for one channel, either fundamental or supplemental

Outputs Various timing signals such as chip clock and even second
Reverse channel configurations

IS-95 is supported using RC1 or RC2 which utilizes a single, selectable channel type:
- Reverse Access Control Channel (R–ACH)
- Reverse Fundamental Channel (R–FCH)
- Reverse Supplemental Channel (R–SCH)

IS-2000 features are supported using RC3 or RC4. The channel types consist of the following:
- Reverse Pilot Channel (R–PICH) (with or without gating)
- Reverse Dedicated Control Channel (R–DCCH)
- Reverse Common Control Channel (R–CCCH)
- Reverse Enhanced Access Channel (R–EACH)

BNC MUX outputs

Event 1 Delayed even second, PN sync
Data out Long code, pilot, coded RSCH, coded RDCCH, coded RFCH, coded RCCCH, coded REACH, Z, Q
Data clock out Chip clock, 5 ms, 10 ms, 20 ms, 40 ms, 80 ms
Symbol sync out Even second, long code sync

Mobile set-up

Radio configuration 1 to 4
Trigger advance 1 to 2457599
Trigger edge Rising, falling
Long code state 0 to 3FFF FFFF FFFF FFFF hex
Long code mask 0 to 3FFF FFFF FFFF FFFF hex

Radio configurations 1¹ and 2¹

Reverse Access Channel (RACH)
- Data PN9, PN15, fixed 4 bit pattern, user file
- Data rate 4.8 kbps
- Frame length 20
- Frame offset 0 to 15

Reverse Fundamental Channel (R-FCH)
- Data PN9, PN15, fixed 4 bit pattern, user file
- Data rate 1.2 kbps, 2.4 kbps, 4.8 kbps, 9.6 kbps for RC1
- 1.8 kbps, 3.6 kbps, 7.2 kbps, 14.4 kbps for RC2
- Frame length 20 mSec
- Frame offset 0 to 15

Reverse Supplemental Channel 0 (R-SCH)
- Turbo coding On/off
- Data PN9, PN15, fixed 4 bit pattern, user file
- Data rate 1.2 kbps, 2.4 kbps, 4.8 kbps, 9.6 kbps for RC1
- 1.8 kbps, 3.6 kbps, 7.2 kbps, 14.4 kbps for RC2
- Frame length 20 mSec
- Frame offset 0 to 15

Radio configurations 3 and 4

Reverse Pilot Channel (R-PICH)
- Walsh code 0 (non adjustable)
- Gating rate Quarter, half, full
- PCB data 0 to FFFF hex

Reverse Dedicated Control Channel (R-DCCH)
- Walsh code 0 to 15
- Data PN9, PN15, fixed 4 bit pattern, user file
- Frame length 5 or 20 mSec
- Data rate For frame length = 5
- 9.6 kbps, for RC 3 or 4
- For frame length = 20
- 9.6 kbps for RC 3 and 14.4 kbps for RC4
- Frame offset (0 to frame length/1.25) - 1

Reverse Fundamental Channel (R-FCH)
- Walsh code 0 to 15
- Data PN9, PN15, fixed 4 bit pattern, user file
- Frame length 5 or 20 mSec
- Data rate For frame length = 5
- 9.6 kbps, for RC 3 or 4
- For frame length = 20
- 1.5, 2.7, 4.8, and 9.6 kbps for RC 3
- 1.8, 3.6, 7.2, and 14.4 kbps for RC4
- Frame offset (0 to frame length/1.25) - 1

Reverse Supplemental Channel 0 (R-SCH0)
- Walsh code 0 to 7
- Data PN9, PN15, fixed 4 bit pattern, user file
- Frame length 20, 40 or 80 mSec
- Data rate For frame length = 20
- 1.5, 2.7, 4.8, 9.6, 19.2, 38.4, 76.8, 153.6 kbps for RC 3
- 307.2 kbps for RC 4
- 1.8, 3.6, 7.2, 14.4, 28.8, 57.6, 115.2, 230.4 kbps for RC4
- For frame length = 40
- 1.35, 2.4, 4.8, 9.6, 19.2, 38.4, 76.8, 153.6 kbps for RC 3
- 1.8, 3.6, 7.2, 14.4, 28.8, 57.6, 115.2 kbps for RC4
- For frame length = 80
- 1.2, 2.4, 4.8, 9.6, 19.2, 38.4, 76.8, 153.6 kbps for RC 3
- 1.8, 3.6, 7.2, 14.4, 28.8, 57.6, 115.2 kbps for RC4
- Frame offset (0 to frame length/1.25) - 1

Reverse Supplemental Channel 1 (R-SCH1)
- Walsh code 0 to 7
- Data PN9, PN15, Fixed 4 bit pattern, user file
- Frame length 20, 40 or 80 mSec
- Data rate For frame length = 20
- 1.5, 2.7, 4.8, 9.6, 19.2, 38.4, 76.8, 153.6 kbps for RC 3
- 1.8, 3.6, 7.2, 14.4, 28.8, 57.6, 115.2 kbps for RC4
- For frame length = 40
- 1.35, 2.4, 4.8, 9.6, 19.2, 38.4, 76.8, 153.6 kbps for RC 3
- 1.8, 3.6, 7.2, 14.4, 28.8, 57.6, 115.2 kbps for RC4
- Frame offset (0 to frame length/1.25) - 1

1. Only one channel is available in RC1 and RC2.
2. These data rates are available with turbo encoding.
3. If either REACH or RCCCH is on, then RPICH is the only other channel that can be on.
For frame length = 5
38.4 kbps
For frame length = 10
19.2, 38.4 kbps
For frame length = 20
9.6, 19.2, 38.4 kbps

Real-time EDGE personality
(Option 202, ESG-DP and ESG-D series only)

Description
Option 202 is a firmware personality built upon the internal real-time I/Q baseband generator (Option UN8). This option will simulate both uplink and downlink EDGE signals. Data can be generated internally or externally with continuous data, or bursted and framed signals. Use custom filtering and framing to keep pace with the evolving definition of EDGE.

Modulation
3π/8-rotating 8PSK (per EDGE specifications) user-selectable (see Modulation under Option UN8)

Filter
“Linearized” Gaussian (per EDGE specifications) user-selectable (see Filter under Option UN8)

Symbol rate
User-adjustable (see Symbol rate under Option UN8) 270.833 kHz (default)

Burst Shape
defaults to EDGE standard power vs. time mask with user definable rise and fall time. Alternatively, upload externally defined burst shape waveforms.

Data structure
Time slots may be configured as normal or custom. The data field of a time slot can accept a user file, PRBS (PN9 or PN15), a fixed sequence or external data. All other fields in a timeslot are editable.

EVM performance (typical)

<table>
<thead>
<tr>
<th>Output power</th>
<th>Output frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard UNB</td>
<td>800 MHz</td>
</tr>
<tr>
<td>≤7 dBm</td>
<td>≤10 dBm</td>
</tr>
<tr>
<td>≤4 dBm</td>
<td>≤7 dBm</td>
</tr>
</tbody>
</table>

Alternate time slot power level control
(Option UNA, ESG-DP and ESG-D series only)

Amplitude is settled within 0.5 dB in 20 µsecs, +4 to −136 dBm at 23 ± 5 °C

Improved ACP performance for TETRA, CDMA and W-CDMA
(Option H99, ESG-D and ESG-DP series only)

ACP improvements for TETRA, CDMA and W-CDMA are listed in the appropriate heading under Options 100, 101, UN8, UN5, and H98 respectively. Specifications that are changes from the standard are listed below.

Output power
250 kHz to 3 GHz + 10 dBm to −136 dBm
>3 GHz + 4 dBm to −136 dBm

Coherent carrier out
−4 dBm ± 5 dBm, typical

Level accuracy
Specifications degrade by 0.2 dB

Level accuracy with digital modulation
≤3 GHz specifications apply at ≤+7 dBm output power
>3 GHz specifications apply at ≤+4 dBm output power

DC vector accuracy
>3.7 GHz specifications apply down to >3 GHz
>3 GHz specifications apply at ≤4 dBm
Attenuator hold level range is same as Option UNB

Spectral purity nonharmonics
>3 GHz specifications apply at ≤+4 dBm output power

Amplitude modulation
500 kHz to 3 GHz specification is typical
>3 GHz not specified

Pulse modulation
On/off ratio
<250 MHz >60 dB

Pulse modulation
Level accuracy < ± 0.7 dB (relative to CW), typical

1. All specifications apply at 23 ± 5 °C.
2. With ALC OFF, specifications apply after the execution of power search.
 With ALC ON, specifications apply for pulse repetition rates ≤10 kHz
 and pulse widths ≥ 5 µs.
3. EDGE and IS-136HS traffic channels have the same physical layer. This EDGE signal can be used to simulate an IS-136HS traffic channel for component tests.
General characteristics

Power requirements
90 to 254 V; 50, 60, or 400 Hz; 200 W maximum

Operating temperature range
0 to 55 °C

Storage temperature range
–40 to 71 °C

Shock and vibration
Meets MIL-STD-28800E Type III, Class 3.

Leakage: Conducted and radiated interference meets MIL-STD-461C CE02 Part 2 and CISPR 11. Leakage is typically <1 µV (nominally 0.1 µV with a 2-turn loop) at ≤1000 MHz, measured with a resonant dipole antenna, one inch from any surface with output level <0 dBm (all inputs/outputs properly terminated).

Storage registers: Memory is shared by instrument states, user data files, sweep list files and waveform sequences. Depending on the number and size of these files, up to 800 storage registers and 10 register sequences are available.

Weight
<13.5 kg (28 lb.) net, <19.5 kg (42 lb.) shipping

Dimensions
133 mm H x 426 mm W x 432 mm D (5.25 in H x 16.8 in W x 17 in D)

Remote programming

Control languages SCPI version 1992.0, also compatible with 8656B and 8657A/B/C/D/J mnemonics.

Functions controlled All front panel functions except power switch and knob.

IEEE-488 functions SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT0, C0, E2.

ISO compliant
The ESG series RF signal generators are manufactured in an ISO-9001 registered facility in concurrence with Agilent Technologies commitment to quality.

Accessories

Transit case Part number 9211-1296

Remote interface 83300A

Inputs and outputs

All front panel connectors can be moved to rear with Option 1EM.

RF output
Nominal output impedance 50 ohms. (type-N female, front panel)

LF output
Outputs the internally-generated LF source. Outputs 0 to 3 Vpeak into 50 ohms, or 0 to 5 Vpeak into high impedance. (BNC, front panel)

External input 1
Drives either AM, FM, φM, or burst envelope. Nominal input impedance 50 ohms, damage levels are 5 Vrms and 10 Vpeak. (BNC, front panel)

External input 2
Drives either AM, FM, φM, or pulse. Nominal input impedance 50 ohms, damage levels are 5 Vrms and 10 Vpeak. (BNC, front panel)

Auxiliary interface
Used with 83300A remote keypad sequencer (9-pin RS-232 connector female, rear panel)

10 MHz input
Accepts a 10 MHz ±10 ppm (standard timebase) or ±1 ppm (high-stability timebase) reference signal for operation with an external timebase. Nominal input impedance 50 ohms. (BNC, rear panel)

10 MHz output
Outputs the 10 MHz internal reference level nominally +7 dBm ±2 dB. Nominal output impedance 50 ohms. (BNC, rear panel)

GPIB
Allows communication with compatible devices. (rear panel)

Sweep output
Generates output voltage, 0 to +10 V when signal generator is sweeping. Output impedance <1 ohm, can drive 2000 ohms. (BNC, rear panel)

Trigger output
Outputs a TTL signal: high at start of dwell, or when waiting for point trigger in manual sweep mode; low when dwell is over or point trigger is received, high or low 4 µs pulse at start of LF sweep. (BNC, rear panel)

Trigger input
Accepts TTL signal for triggering point-to-point in manual sweep mode, or to trigger start of LF sweep. Damage levels ≥+10 V or ≤–4 V. (BNC, rear panel)

With ESG-AP and ESG-A series and

Option 1E6 only

Pulse input
Drives pulse modulation. Input impedance TTL. (BNC, front or rear panel)

With ESG-DP and ESG-D series only

“1” input
Accepts an “I” input either for I/Q modulation or for wideband AM. Nominal input impedance 50 ohms, damage levels are 1 V rms and 10 Vpeak. (BNC, front panel)

“Q” input
Accepts a “Q” input for I/Q modulation. Nominal input impedance 50 ohms, damage levels are 1 V rms and 10 Vpeak. (BNC, front panel)

1. ESG series does not implement 8657A/B “Standby” or “On” (R0 or R1, respectively) mnemonics.
General characteristics (continued)

Coherent carrier output
Outputs RF modulated with FM or ΦM, but not IQ or AM. Nominal power 0 dBm ±5 dB. Frequency range from 249.9990001 MHz to maximum frequency. For RF carriers below this range, output frequency = 1 GHz – frequency of RF output. Damage levels 20 Vdc and 13 dBm reverse RF power. (SMA, rear panel)

With ESG-DP and ESG-D series and Option UN8 only
Data input
Accepts serial data for digital modulation applications. Expects CMOS input. Leading edges must be synchronous with DATA CLOCK falling edges. Damage levels are >+8 and <-4 V. (BNC, front panel)

Data clock input
Accepts CMOS clock signal (either bit or symbol), to synchronize inputting serial data. Damage levels are >+8 and <-4 V. (BNC, front panel)

Symbol sync input
Accepts CMOS synchronization signal. Symbol sync might occur once per symbol or be a single, one bit wide pulse to synchronize the first bit of the first symbol. Damage levels are >+8 and <-4 V. (BNC, front panel)

Baseband generator reference input
Accepts 0 to +20 dBm sinewave, or TTL squarewave, to use as reference clock for GSM applications. Only locks the internal data generator to the external reference; the RF frequency is still locked to the 10 MHz reference. Nominal impedance is 50 ohms at 13 MHz, AC-coupled. Damage levels are >+8 and <-8 V. (BNC, rear panel)

Burst gate input
Accepts CMOS signal for gating burst power when externally supplying data. Damage levels are >+8 and <-4 V. (BNC1, rear panel)
Pattern trigger input accepts CMOS signal to trigger internal pattern or frame generator to start single pattern output. Damage levels are >+8 and <-8 V. (BNC1, rear panel)

Event 1 output
Outputs pattern or frame synchronization pulse for triggering or gating external equipment. May be set to start at the beginning of a pattern, frame, or timeslot and is adjustable to within ± one timeslot with one bit resolution. Damage levels are >+ 8 and <-4 V. (BNC1, rear panel)

Event 2 output
Outputs data enable signal for gating external equipment. Applicable when external data is clocked into internally generated timeslots. Data is enabled when signal is low. Damage levels >+8 and <-4 V. (BNC1, rear panel)

Data output
Outputs data from the internal data generator or the externally supplied signal at data input. CMOS signal. (BNC1, rear panel)

Data clock output relays a CMOS bit clock signal for synchronizing serial data. (BNC1, rear panel)

Symbol sync output
Outputs CMOS symbol clock for symbol synchronization, one data clock period wide. (BNC1, rear panel)

"I" and "Q" baseband outputs
Outputs in-phase and quadrature-phase component of I/Q modulation from the internal baseband generator. Full scale is 1 V peak to peak. Nominal impedance 50 ohms, DC-coupled, damage levels are >+2 and <-2 V. (BNC, rear panel)

With ESG-DP and ESG-D series and Option UND only
Baseband generator reference input
Accepts a TTL or > –10 dBm sinewave. Rate is 250 kHz to 20 MHz. Pulse width is >10 ns.

Trigger types
Continuous, single, gated, segment advance

"I" and "Q" baseband outputs
Outputs in-phase and quadrature-phase component of I/Q modulation from the internal baseband generator. Full scale is 1 V peak to peak. Nominal impedance 50 ohms, DC-coupled, damage levels are >+2 and <-2 V. (BNC, rear panel)

Event 1 output
Even second output for multichannel CDMA. Damage levels are >+8 V and <-4 V. (BNC1, rear panel)

With ESG-DP and ESG-D series and Option UN7 only
Data, clock and clock gate inputs
Accepts TTL or 75 Ω input. Polarity is selected. Clock duty cycle is 30% to 70%. Damage levels are >+8 V and <-4 V (BNC1, rear panel)

Sync loss output
Outputs a TTL signal that is low when sync is lost. Valid only when measure end is high. Damage levels are >+8 V and <-4 V. (SMB, rear panel)

No data detection output
Outputs a TTL signal that is low when no data is detected. Valid only when measure end is high. (SMB, rear panel)

Error-bit-output (not supported at 10 Mbps rate)
Outputs 80 ns (typical) pulse when error bit is detected. (SMB, rear panel)

Test result output
Outputs a TTL signal that is high for fail and low for pass. Valid only on measure end falling edge. (SMB, rear panel)

Measure end output
Outputs a TTL signal that is high during measurement. Trigger events are ignored while high. (SMB, rear panel)

With ESG-DP and ESG-D series and Option UNA
Alternate power input
Accepts CMOS signal for synchronization of external data and alternate power signal timing. Damage levels are >+8 and <-4 V. (BNC1, rear panel)

With ESG-D and Option 300
321.4 MHz input
Accepts a 321.4 MHz IF signal. Nominal input impedance 50 ohms. (SMB, rear panel)

1. Option 1EM replaces this BNC connector with an SMB connector.
Ordering information

See ESG Family RF Signal Generators Configuration Guide
(literature number 5965-4973E) for more information

E4400B 1 GHz ESG-A series RF signal generator
E4420B 2 GHz ESG-A series RF signal generator
E4421B 3 GHz ESG-A series RF signal generator
E4422B 4 GHz ESG-A series RF signal generator

E4423B 1 GHz ESG-AP series RF signal generator
E4425B 3 GHz ESG-AP series RF signal generator
E4424B 2 GHz ESG-AP series RF signal generator
E4426B 4 GHz ESG-AP series RF signal generator

E4430B 1 GHz ESG-D series RF signal generator
E4431B 2 GHz ESG-D series RF signal generator
E4432B 3 GHz ESG-D series RF signal generator
E4433B 4 GHz ESG-D series RF signal generator

E4434B 1 GHz ESG-DP series RF signal generator
E4435B 2 GHz ESG-DP series RF signal generator
E4436B 3 GHz ESG-DP series RF signal generator
E4437B 4 GHz ESG-DP series RF signal generator

Options

See ESG Family RF Signal Generators Configuration Guide
(literature number 5965-4973E) for more information

To add options to a model, use the following ordering scheme:

<table>
<thead>
<tr>
<th>Model #</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>E4432B</td>
<td>E4432B-UND</td>
</tr>
<tr>
<td>E4432B-100</td>
<td></td>
</tr>
</tbody>
</table>

- **Model # -OB1** Adds extra manual set
- **Model # -OBV** Adds service documentation, component level
- **Model # -OBW** Adds service documentation, assembly level
- **Model # -OBX** Adds service documentation, assembly and component level
- **Model # -1CM** Adds rack mount kit, part number 5063-9214
- **Model # -1CN** Adds front handle kit, part number 5063-9227
- **Model # -1CP** Adds rack mount kit with handles, part number 5063-9221
- **Model # -1E5** Adds high-stability timebase
- **Model # -1E6** High-performance pulse modulation
- **Model # -1EM** Moves all front panel connectors to rear panel
- **Model # -UN5** Adds multichannel IS-95 CDMA personality
- **Model # -UN7** Adds internal bit-error-rate analyzer
- **Model # -UN8** Adds real-time I/Q baseband generator with TDMA standards and 1 Mbit of RAM
- **Model # -UN9** Adds 7 Mbits of RAM to Option UN8
- **Model # -100** Adds multichannel W-CDMA personality
- **Model # -101** Adds multichannel cdma2000 personality
- **Model # -200** Adds real-time 3GPP W-CDMA personality
- **Model # -201** Adds real-time cdma2000 personality
- **Model # -202** EDGE personality for Real-Time BB generator
- **Model # -300** Base station BERT extension for Option UN7 (internal bit-error-rate analyzer)
- **Model # -404** Signal Studio for 1xEV-DO
- **Model # -406** Signal Studio for Bluetooth
- **Model # -UNA** Alternate timeslot power level control
- **Model # -UNB** Adds higher power with mechanical attenuator
- **Model # -UND** Adds internal dual arbitrary waveform generator
- **Model # -H99** Improves ACP performance for TETRA, CDMA, and W-CDMA
ESG family application and product information

Application notes, product notes, and product overviews

- RF Source Basics, a self-paced tutorial (CD ROM), literature number 5980-2060E.
- Digital Modulation in Communications Systems—An Introduction, Application Note 1298, literature number 5965-7160E.
- Generating and Downloading Data to the ESG-D RF Signal Generator for Digital Modulation, Product Note, literature number 5966-1010E.
- Using Vector Modulation Analysis in the Integration, Troubleshooting and Design of Digital Communications Systems, Product Note, literature number 5091-8687E.
- Controlling TDMA Timeslot Power Levels in the ESG-D Series Option UNA, Product Note, literature number 5966-4472E.
- Testing CDMA Base Station Amplifiers, Application Note 1307, literature number 5967-5486E.
- Customizing Digital Modulation with the ESG-D Series Real-Time I/Q Baseband Generator, Option UND, Product Note, literature number 5966-4096E.
- Using the ESG-D RF Signal Generator’s Multicarrier, Multichannel CDMA Personality for Component Test, Option UN5, Product Note, literature number 5968-2981E.
- Generating Digital Modulation with the ESG-D Series Dual Arbitrary Waveform Generator, Option UND, Product Note, literature number 5966-4097E.
- Understanding GSM Transmitter Measurements for Base Transceiver Stations and Mobile Stations, Application Note 1312, literature number 5968-2320E.
- Understanding CDMA Measurements for Base Stations and their Components, Application Note 1311, literature number 5968-0953E.
- Testing and Troubleshooting Digital RF Communications Receiver Designs, Application Note 1314, literature number 5968-3579E.
- Using the ESG-D series of RF signal generators and the 8922 GSM Test Set for GSM Applications, Product Note, literature number 5965-7158E.
- ESG Series RF Signal Generators Option 200 W-CDMA, Product Overview, literature number 5988-0369EN.
- ESG Series RF Signal Generators Option 201 cdma2000, Product Overview, literature number 5988-0371EN.

Product literature

- ESG Family RF Signal Generators, Brochure, literature number 5968-4313E.
- ESG Family RF Signal Generators, Technical Specifications, literature number 5965-3096E.
- ESG Family RF Signal Generators, Configuration Guide, literature number 5965-4973E.
- Signal Generators: Vector, Analog, and CW Models, Selection Guide, literature number 5965-3094E.

See the ESG family Web page for the latest information

Get the latest news, product and support information, application literature, firmware upgrades and more. Agilent’s Internet address for the ESG family is: http://www.agilent.com/find/esg
Agilent Technologies’ Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent’s overall support policy: “Our Promise” and “Your Advantage.”

Our Promise
Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage
Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

Agilent T&M Software and Connectivity

Agilent’s Test and Measurement software and connectivity products, solutions and developer network allows you to take time out of connecting your instruments to your computer with tools based on PC standards, so you can focus on your tasks, not on your connections. Visit www.agilent.com/find/connectivity for more information.

By internet, phone, or fax, get assistance with all your test & measurement needs

Phone or Fax

United States:
(tel) 800 452 4844
Canada:
(tel) 677 884 4414
(fax) 905 282 6405
China:
(tel) 800 810 0189
(fax) 800 820 2816
Europe:
(tel) (31 20) 547 2323
(fax) (31 20) 547 2390
Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840
Korea:
(tel) (82 2) 2004 5004
(fax) (82 2) 2004 5115
Latin America:
(tel) (305) 268 7500
(fax) (305) 269 7599
Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331
Other Asia Pacific Countries:
(tel) (65) 5375 8100
(fax) (65) 6836 0252
Email: tm_asia@agilent.com

Online Assistance:

www.agilent.com/find/assist

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2003
Printed in USA July 7, 2003
5965-3086E